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ABSTRACT
In this article we consider the problem of mapping a noisy
estimate of a user’s current location to a semantically mean-
ingful point of interest, such as a home, restaurant, or store.
Despite the poor accuracy of GPS on current mobile devices
and the relatively high density of places in urban areas, it is
possible to predict a user’s location with considerable pre-
cision by explicitly modeling both places and users and by
combining a variety of signals about a user’s current context.
Places are often simply modeled as a single latitude and lon-
gitude when in fact they are complex entities existing in both
space and time and shaped by the millions of people that in-
teract with them. Similarly, models of users reveal complex
but predictable patterns of mobility that can be exploited for
this task. We propose a novel spatial search algorithm that
infers a user’s location by combining aggregate signals mined
from billions of foursquare check-ins with real-time contex-
tual information. We evaluate a variety of techniques and
demonstrate that machine learning algorithms for ranking
and spatiotemporal models of places and users offer signifi-
cant improvement over common methods for location search
based on distance and popularity.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases; H.2.8
[Database Applications]: Data Mining; I.5.1 [Pattern
Recognition]: Statistical

Keywords
spatial search, machine learning, learn to rank, spatiotempo-
ral models, location data, data mining, geocoding, informa-
tion retrieval, foursquare, human mobility, mobile devices

1. INTRODUCTION
Today’s location-aware mobile devices have dramatically

increased the availability and usefulness of location infor-
mation. Many applications take advantage of the ability of
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these devices to report a user’s location in terms of latitude
and longitude, providing useful services to the user such as
maps, driving directions, tourist guides, photo sharing, and
more. Other services allow users to store content that has
been “geotagged” with a location and share it with friends.

Several applications go one step further than raw coor-
dinates, attaching a semantically meaningful name to a lo-
cation. The coarsest form of this labeling involves using a
reverse geocoding service [2] to find a city or neighborhood
name for a given location. Examples include Twitter, which
allows users to attach a location to a tweet, displaying it
as a city or neighborhood, and Facebook, which tags most
posts by default with a user’s current city.

These coarse location names provide some context, but
in many cases it is desirable to be significantly more gran-
ular when choosing a name for a location. For example,
Instagram allows users to choose a specific location when
sharing a photo, such as “Washington Square Park” or “The
Blind Tiger.” Similarly, foursquare, Path, and other mobile
applications allow users to “check in” at a specific location
such as a restaurant or museum. Tying users and their data
to specific, semantically meaningful locations enables these
services to provide richer experiences, such as showing the
user relevant and timely information like a menu from a
restaurant or a tip from a friend about what to order [31].
Moreover, identifying precise locations facilitates the sharing
and aggregation of local information. For example, a user of
foursquare can see not only recent places their friends have
checked into, but also which of their friends have endorsed
nearby venues.

Unfortunately, mapping a user’s location to a database of
known points of interest is complicated by several factors.
While location services such as GPS, WiFi, and cell-tower
triangulation can provide accuracies under 10 meters un-
der ideal conditions [35], results in real-world environments
are substantially worse, with median accuracies of 70 meters
(see Figure 1). Additionally, many areas of the world are ex-
tremely dense in terms of semantically meaningful locations;
in many urban environments, interesting locations may even
be located directly above or below each other. Finally, while
a user’s history may be useful in determining their location
[7, 18], the system must still provide accurate results even
for users with little or no history.

Despite these difficulties, there are many benefits to an
accurate system for finding specific, semantically meaningful
names for a given set of coordinates. Tuning such a system
for high recall in the top few results allows users to choose
their location from a list of results and more easily share and
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Figure 1: Distribution of reported location accuracy
from 26,532 randomly sampled worldwide searches
on foursquare. The median is 70 meters, and the
mean is 551 meters.

retrieve local information. Alternatively, a system with high
precision in the first position could be used to automatically
label a user’s location or content with a specific location
name, or to tie together multiple pieces of content into a
coherent grouping about a particular place. Furthermore,
such a system could be used to trigger highly contextual
notifications, such as transit information when a user enters
a train station, or targeted deals when a user enters a store.

In this article, we describe the development, training, and
evaluation of the spatial search engine that powers the four-
square application and API. We first introduce our approach
to modeling people and places using check-in data, and then
describe how these models can be used for retrieval and rank-
ing. We focus on using machine learning techniques to cre-
ate an optimal ranking function, which learns from large
amounts of implicit feedback. Finally, we demonstrate the
fully working system and evaluate its performance in a vari-
ety of real-world situations, showing significant improvement
over common methods for location search and previously re-
ported results.

1.1 Related Work
The growing ubiquity of GPS-enabled consumer mobile

devices has only recently enabled the study of user location
at the scale described in the current work. Lian and Xie
[18] describe a similar system for mapping a user to a point
of interest (POI) trained on data from 545 users in a single
city using a database of approximately 16,000 points of in-
terest. The system uses several features, such as distance,
time, POI popularity, and user history, to train a model
that predicts a user’s location with 64.5% recall in the top
5 results. Our work improves these results by introducing
several new features, more robust models, and significantly
more training data (in terms of both size and diversity) to
search a much larger database of locations.

Similar techniques regarding context and personalization
have been applied in the area of local business search and
web search. Lane et al. [17] report relevance improvements
of up to ten times in local search relevance by including
simple context and behavioral similarity features in a rank-
ing model. Church and Smyth [10] demonstrate the efficacy
of including user-, location-, and time-dependent features
in mobile web search. Many techniques incorporate signals
mined from query logs to improve search results [34, 32].

Outside of the realm of search, significant work has been
done with respect to analyzing and describing GPS data

Figure 2: The check-in screen of the foursquare ap-
plication where a user searches for nearby venues
and selects a venue to check in to.

collected over time from users. Ashbrook and Starner [6,
7] cluster GPS locations to model significant locations and
predict user movements using a Markov model. Gonzalez et
al. [13] develop similar models to predict where a user will
be based on their history. Liao et al. [19] predict signifi-
cant locations for a given user using hierarchical conditional
random fields, while Marmasse and Schmand [21] describe
a similar system to collect GPS trails and prompt the user
to label the significant locations. Furthermore, many tech-
niques combine social and location-based signals to signifi-
cantly boost the accuracy of models for predicting user loca-
tion as well as determining attributes of social relationships
[30, 8, 28, 20].

Geolocating other types of data has also received substan-
tial attention. Systems for mapping text to a location have
been described for tweets [9], blogs [11], and web pages [5]
using a variety of lexicographic and user features. Similarly,
Serdyukov et al. [29] describe techniques for mapping photos
to geographic coordinates using language models and user
annotations.

1.2 Venue Search in Foursquare
Foursquare is a location-based service which handles more

than 5 million check-ins each day, mapping each to one of
more than 40 million locations worldwide. Foursquare has
accumulated over 2.5 billion historical check-ins.1 These ac-
tions are enabled by a search engine that maps user locations
into a database of points of interest with high accuracy. This
service is also provided as an API for external developers to
add location mapping to their applications [1].

Figure 2 shows the check-in screen from the foursquare

1As of August 2012.
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Figure 3: Overview of our system architecture. There are two main stages to responding to a query to produce
a response: retrieval, where a spatial index is used to generate a set of candidate venues, and ranking where
a machine-learned ranker is used to sort the response venues. Data is then logged from the search process
and used offline for modeling and optimization.

application. Upon pressing the “Check in” button, the ap-
plication sends the user’s ID and current location to the
server. The user ID is a unique identifier that is used to
retrieve the user’s history, friends, interests, and other per-
sonalized information used for ranking. The user’s location
is reported by the mobile device, and includes latitude, lon-
gitude, and a horizontal accuracy reading. A timestamp is
generated at query time on the server in UTC, and is used to
identify historical patterns in venue popularity for ranking.

The interface presents the user with a list of nearby loca-
tions, along with a map for context. The locations shown are
chosen based on a variety of factors outlined below, including
their popularity, distance from the user, and compatibility
with the user’s history. In particular, the current number of
other users checked into each venue is displayed, which can
help give the user an indication of the current popularity of
the venues. For similar reasons, avatars for any of the user’s
own friends that are currently checked in are also shown. An
icon indicating the location’s primary category (e.g. Pub or
Pizza Place) is also displayed to provide context for the user.

In certain situations, if the location in which the user is
interested is not returned, they may perform an explicit tex-
tual query to find the correct venue. We term these searches
query searches, to differentiate them from the nearby searches
described above. We do not describe the system for query
searches in this paper, but it is an extension of the techniques
described here using standard text retrieval methods.

If the user still cannot find the desired location after a
query search, they are offered the option of creating a new
venue in the database. This venue is immediately included
in the search engine and made available to the user (and
others) to check in to. In this way, the system can adapt to
new and missing locations and other recall failures.

Relative to other search systems, foursquare’s check-in
search has the benefit that the user provides direct feed-
back about the correct answer to their query by checking
into that location after their search. Even in cases where
the system fails to provide an accurate answer using nearby

search, the user will often use query search to find the cor-
rect venue and check into it (26% of foursquare’s searches
include a text query). We use these sequences of user queries
(also called sessions) as important training data when deter-
mining which features are the best predictors of the correct
result.

2. ARCHITECTURE
The goal of a spatial search engine is to accurately re-

trieve and rank candidate venues which best match a query.
Each query consists of a user, timestamp, and location qi =
(u, t, l), where the location consists of a latitude, longitude,
and an estimate of horizontal accuracy. Figure 3 gives an
overview of our system architecture for mapping a query
to a ranked list of venues. For each query we first gener-
ate a candidate set of venues Si = {v1, v2, ...vmi} using a
coarse spatial index. We then compute features for each
query-venue pair F (qi, vj) = xi,j ∈ R

d, where the d fea-
tures capture various relationships between each query and
the candidate venue, such as distance, prior personal his-
tory of the user, etc. The response set Ri consists of the
venues in the candidate set Si rank ordered by some func-
tion of the features G(xi,j). For example, a simple linear
model, represented as a vector of weights w ∈ R

d, would
yield G(xi,j) = w�xi,j . For each query-venue pair we then
observe a value yi,j ∈ {0, 1} which indicates whether the
user actually checked into venue vj after performing query
qi.

In this section, we will focus on three main aspects of
our system architecture. In Section 2.1 we discuss various
ways for modeling places and people that are useful for both
retrieval and feature generation. Then in Section 2.2 we
describe how we generate the candidate set Si for a given
query. We then discuss in Section 2.3 how we construct
features F (qi, vj) and how we learn different ranking func-
tions G(xi,j) by optimizing learn-to-rank algorithms using
implicit feedback.



(a) JFK Airport (b) Golden Gate Bridge (close up) (c) The Blind Tiger

Figure 4: The spatial distribution of check-ins at different venues reveals complex patterns. The coordinates
of check-ins for each venue are plotted in black. The colors represent a probability distribution modeled as
a mixture of bivariate Gaussians, ranging from red (high probability) to blue (low probability). Although
individual GPS estimates are noisy, in aggregate these estimates produce accurate reproductions of a venue’s
shape. Note the fine detail in the runways and terminals of JFK (left), and the clear outline of the Golden
Gate Bridge (middle). Even for small venues such as the bar, The Blind Tiger (right), we see a non-uniform
shape, that captures the nearby geography of streets and patterns in the noise associated with check-ins at
that venue.

2.1 Modeling People and Places
Every check-in helps define exactly where a place is on the

surface on the earth. Consider creating a spatial model for
John F. Kennedy Airport in New York City from the 442
thousand historical check-ins that have occurred there. In
Figure 4(a), we see that despite each individual GPS esti-
mate being prone to noise, the aggregate of these estimates
provides an accurate picture of the venue – one can easily
make out the runways and terminals when the coordinates
of all users’ check-ins at the venue are plotted. A spatial
model allows us to evaluate the probability that a set of lo-
cation coordinates l belongs to a specific venue v: P (l | v).
Figure 4 shows the spatial models for a variety of different
venues.

The simplest spatial model we compute from check-ins
is based on the latitude and longitude of the center of the
venue’s check-ins, lc(v). We compute lc(v) by taking all
check-ins to a venue, c(v), removing outliers, and taking
the mean of both the latitudes and longitudes. Then given
a query location l, we approximate a distance-based spatial
score as:

P (l | v) ≈
(

d

dist(l, lc(v)) + d

)e

where we set d = 50 meters, e = 4, and dist(l, lc(v)) is calcu-
lated by the Haversine formula. As we will show in Section
3.1, using a distance-based score by itself is a relatively poor
predictor of the correct venue for a given set of location coor-
dinates, particularly in dense urban areas. To address this
problem, we also consider building probabilistic models of
the shape of a venue and the distribution of the observed
GPS noise as a mixture of bivariate Gaussians:

P (l | v) =
∑
k

ckg(l|µk,Σk),

where g(l, µk,Σk) represents a bivariate Gaussian with mean

µk and covariance Σk evaluated at location l, and ck repre-
sents the mixing proportions. The parameters for this model
can be learned via expectation maximization [23].

Each check-in also reveals information about the times
at which places are popular. For example, Figure 5 shows
the check-in rate over the course of a week for 3 different
venues. We define this temporal signal as the probability
that a check-in at a venue happens at a specific hour of the
week, and estimate this probability using maximum likeli-
hood:

P (t | v) = # of check-ins at wh(t)

total # of check-ins
,

where wh(t) is the hour of the week corresponding to time t.
This signal is vital for distinguishing between venues which
are close in distance but popular at different times, for ex-
ample a bar that is next to a bakery. We also calculate a
variety of real-time signals about venues as well. We use
an exponential moving average of check-ins/day to measure
the current popularity of venues. We also maintain a count
of the number of people who are currently checked into the
venue, defined as those users who have been at the venue less
than 3 hours and have not yet checked into another place.

People have been shown to be very predictable in terms
of their mobility patterns [13], and Lian and Xie have shown
that people’s past check-in behavior is a strong predictor of
future check-ins [18]. Furthermore, De Domenico et al. show
that the locations of a user’s friends is highly predictive of
a user’s location [20]. We observe that 73.1% of foursquare
check-ins occur at venues to which the user has been before,
and 62% of a user’s check-ins are at places to which their
friends have been before. Thus we also use personalized
signals mined from a user’s check-ins and other actions as
well as their social connections to improve venue search for
these users.
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Figure 5: Places have distinct temporal signatures based on when they are popular during the week. Here
we see normalized weekly check-ins for 3 venues within a 1 block radius in the West Village of New York
City: Amy’s Bread, a cafe which serves breakfast and lunch; Perilla, a nice restaurant that serves dinner and
brunch on the weekends, and Bleecker Street Pizza, popular for both dinner and late night food on weekends.

2.2 Retrieval
The first step in our spatial search process is to retrieve

a set of candidate venues for a given query. The primary
source of these candidates is a geospatial index which we
query for the m most popular venues closest to the user’s
query position. The current system uses m = 150 as a trade-
off between recall and performance considerations.

Unfortunately, due to poor accuracy in the position re-
ported at query time, this initial query can fail to retrieve
the desired venue under a variety of different circumstances.
The geospatial query is particularly problematic in dense
urban areas. For example, in some areas of Manhattan re-
trieving the 150 venues closest to a given position will result
in an effective search radius of less than 75 meters (approxi-
mately the median of reported location accuracy as reported
in Figure 1). Additionally, because venues are indexed by
their the center point (computed as described in Section 2.1),
the geospatial query can fail when the desired venue itself is
particularly large. In these cases, the query position might
physically exist within the venue’s boundary, but nonethe-
less still be a considerable distance from the venue’s indexed
center point. For example, a user who searches for an airport
while sitting on the airport’s runway might be 1000 meters
or more from the position at which the airport is indexed,
which is usually near the center of the airport terminal.

To mitigate these shortcomings, we retrieve supplemental
candidates from three other sources. We query the last 6
months of the user’s check-in history for any venues within
1000 meters of the user’s current location. We include these
venues in the candidate set even if they were not retrieved by
the geospatial query. Similarly, we include any venue within
1200 meters at which the user has a friend who is currently
checked in. Finally, we keep a list of several hundred of the
most frequently checked into large venues in the world (such
as airports), and include these in the candidate set if they
are within a few kilometers of the query position.

Our geospatial index is built on top of the S2 Geome-
try Library, open sourced by Google.2 S2 models spherical
geometries by mapping the sphere to a cube, and then recur-
sively dividing each face of the cube into four child squares,
which it refers to as“cells”. There are 31 levels of cells, start-
ing with the faces of the cube itself, which are level 0. Each
cell has a 64-bit identifier called its “cell ID”. For a sphere

2S2 Geometry Library, http://code.google.com/p/s2-
geometry-library

the size of the Earth, a typical level 30 S2 cell has an area
of less than 1 cm2.

The S2 representation has several benefits. Mapping a
latitude and longitude to any of the 31 S2 cell IDs which
contain it is very efficient. Similarly, given two S2 cell IDs,
determining containment is a single bitwise operation. Addi-
tionally, given a geometric region on a sphere, the S2 library
can efficiently compute a set of S2 cells which cover that
region. The number of cells in this “cover” can be tuned
by choosing larger or smaller cells at a given point, at the
expense of a less accurate representation of the given region.

Using the S2 library, it is easy to build a performant
geospatial search system on top of any standard database
or key-value store.3 For each venue in our index, we add
an indexed field to the key-value store which contains a list
of the 31 S2 cell IDs which contain the venue, one for each
S2 level. At query time, we compute the set of S2 cell IDs
which cover the query region. We restrict the query to that
region by adding those S2 cell IDs to the query as a boolean
OR (Figure 6).

In order to find our target of approximately 150 candidate
venues, we need to scale the size of the retrieval region based
on the expected density of venues in that region. That is,
we need to retrieve from a smaller region in areas where
venues are dense (for example, metropolitan areas) than we
do in areas where venues are sparse. To solve this problem
we compute “venue density”, which is defined as the number
of venues per unit area in a given region. In practice, we
choose the region to be a reasonably-sized S2 level (level
15, roughly 250 meters on a side), and calculate the venue
density for every S2 cell at that level using an offline process.
We use this density to automatically scale the query radius
to retrieve approximately the desired number of venues given
the density of the query location.

The complete venue retrieval process is thus:

1. Calculate the S2 cell at the chosen venue density S2
level for the user’s reported location.

2. Look up the venue density for that cell, and calcu-
late the estimated radius, r, that will retrieve approx-
imately 150 venues for that density.

3. Calculate an S2 covering of the spherical cap within r
of the query position.

3We have built our geospatial index on top of the Apache
Solr project, http://lucene.apache.org/solr/.



Figure 6: An example of an S2 cell-based retrieval.
The query area is shown by the red circle around the
query location. The set of S2 cells used for retrieval
(known as a “cover”) is shown as red polygons (note
that an S2 cover is an approximation of the given
region). The desired venue is shown as a pin on the
map, with its enclosing S2 cell highlighted in yellow.

4. Query the index to retrieve all of the venues which are
indexed with any of the cell IDs in the covering to get
a list of nearby candidate venues.

5. Concatenate the nearby candidate venues with the sup-
plementary retrieval sources (venues that the user has
visited previously, venues that the user’s friends are
checked in at, and large venues that are nearby).

At the end of the retrieval process, we have between 150
and 250 candidate venues, along with supplementary infor-
mation about the venues’ history, shape, popularity over
time, and other factors. In parallel, we have also retrieved
the user’s own history and preferences, as well as informa-
tion about their friends and their friends’ histories. All of
this information is fed into the ranking system.

2.3 Ranking
Many state-of-the-art search systems rely on machine learn-

ing to create models for ranking [12, 27]. Traditionally, the
data for training such models is generated by people explic-
itly annotating previously logged search results. There are a
few drawbacks to this approach. First, it is time-consuming
and expensive to collect explicit feedback at a large scale.
Second, it is difficult for annotators to make judgements
about personalized results, thus making this approach less
desirable for use in a highly personalized search product such
as foursquare’s. Consider the case where two users perform
a search from approximately the same location in a shopping
mall. The desired result depends heavily on their personal
preferences making it difficult for an annotator to label the
correct result given only the list of nearby shops.

An alternative approach that has recently gained popular-
ity is based on interpreting the implicit behavior of users as

they are interacting with search results. Such implicit feed-
back is often available at a large scale and is easy to collect.
Unfortunately, implicit feedback is ambiguous. Clicks, the
most common form of implicit feedback in search, do not
necessarily indicate that users have found the right result.
Clicks are biased towards the top results and are often ac-
cidental. Users reformulate queries or abandon the search if
the clicked results are not satisfactory. Joachims et al. have
made great progress in interpreting clicks by extracting pair-
wise preferences [16] using query chains [15] and randomly
modifying the presentation of search results [26].

In this work, we use a different form of implicit feed-
back: check-ins. A check-in at one of the venues in the search
results is an unambiguous endorsement of that result by the
user. Using this labeling technique, we can construct a train-
ing set consisting of features and labels for each candidate
venue xi,j and yi,j for j = 1 . . .mi of each query qi, where
yi,j denotes the binary label for the jth result in the candi-
date set for the ith query. The label is 1 if the user checked
into the venue and is 0 otherwise.

2.3.1 Data Collection
From the perspective of collecting data, a search query and

a check-in are distinct and independent actions. Depending
upon the version of the foursquare product, a check-in can
immediately follow a query or it may have a few intermediate
steps (e.g. viewing additional information about a venue
prior to checking in). Each of these user actions is associated
with independent calls to foursquare services running over
a large pool of machines. Each call to a foursquare service
results in an event log being written by the service to a
distributed log collection mechanism.4

The candidate results Ri and the derived ranking features
F (qi, vj) = xi,j for j = 1 . . .mi used to train our search
algorithm are recorded in the server event logs whenever a
user performs a search query qi. Since many of our models
and indices are updated continuously, regenerating the exact
feature values that were used to rank the results for a query
in the past is difficult. Instead, the candidate venues and
their corresponding features are pushed to logs at the time
of the query, removing the need for regenerating features
altogether.

To derive training data from event logs, we use automated
MapReduce jobs written in Scala [24] and Pig [25]. The first
step in the process joins the independent logs into user “ses-
sions” which contain all actions taken by a user during a
given time frame (e.g. opening the application, performing
a nearby check-in search, performing a query search for “The
Blind Tiger”, then checking in to a specific venue). Each ses-
sion involving either a nearby or query search is then catego-
rized as successful or not if it also includes a corresponding
check-in.

Next, we sample a specified number of successful search
sessions and split them into training, validation, and test
sets. This process extracts from the logs all candidate venues,
their features, and their original rank as presented to the
user. It then joins these with other datasets containing ex-
ploratory features, allowing us to evaluate the efficacy of
these features without implementing them at production
scale. The training and test sets are then exported as files

4Apache Flume, https://cwiki.apache.org/flume/



Feature Description

Spatial score P (l | v)
Timeliness P (t | v)
Popularity Smoothed estimate of expected check-ins/day at the venue
Here now # of users currently checked in to the venue at query time
Personal History # of previous visits from the user at the venue
Creator 1 if the user created the venue, 0 otherwise
Mayor 1 is the user is the mayor of the venue, 0 otherwise5

Friends Here Now # of the user’s friends currently checked in at query time
Personal History w/ Time of Day # of previous visits from the user at the venue at the same time of the day

Table 1: Overview of the features used for ranking. General signals (top) capture information about the
user’s proximity to a venue as well as information about when the venue is popular and to what degree.
Personalized signals (bottom) capture past interactions between the user (and his friends) with the venue.

that can be used with various machine learning packages for
model training and exploration.

2.3.2 Features
The primary features for ranking are derived from models

of venues and users as described in Section 2.1. In addition
to the scores derived from these models we construct features
using contextual information about the users and venues at
the time of the query. These contextual signals are updated
in real time throughout our system. We also derive features
using the social relationships between users. Each of these
features is generated and logged at query time. In Table 1,
we see an overview of the features used by our search ranking
algorithm.

2.3.3 Metrics
We use 3 different metrics to evaluate the performance

of a ranking Ri given query qi and labels yi,j : precision at
position 1 (P@1):

P@1 = yi,1,

recall at 5 (R@5):

R@5 =

5∑
j=1

yi,j ,

and normalized discounted cumulative gain (NDCG) [14]:

NDCG@5 =
1

Zi

5∑
j=1

2yi,j − 1

log(1 + j)
,

where yi,j indicates that the result shown at position j for
query i was the location the user checked into, and Zi is
the normalizing constant chosen such that a perfect ranking
would result in an NDCG of 1 for each query. Each of these
metrics can then be averaged over all n queries in our eval-
uation set to measure the performance of different ranking
functions.

2.3.4 Optimization
We consider 3 training procedures for learning the func-

tionG(xi,j) which combines features into a rankable score: lin-
ear regression, coordinate ascent, and LambdaMART. For
5On foursquare, the “mayor” of a venue is the person who
has been there more days than any other foursquare user in
the last 60 days.

the linear regression model, we simply learn a set of weights
w where G(xi,j) = w�xi,j . The weights are learned such
that the L2 loss is minimized:

w = argminw

∑
i,j

||w�xi,j − yi,j ||2.

The coordinate ascent training procedure similarly learns
a set of linear weights but can be used to optimize metrics
other than L2 loss and has thus proved to be very useful
for search ranking [22]. LambdaMART has been shown to
provide significant lift in search ranking tasks [33] by con-
structing an ensemble of decision trees which non-linearly
combine features. We use MATLAB for our linear regres-
sion implementation and use RankLib for implementations
of coordinate ascent and LambdaMART [3].

3. EXPERIMENTS
We present a variety of experiments which evaluate dif-

ferent aspects of our search algorithm. We start by eval-
uating the impact of modeling places using spatiotemporal
probability distributions, as compared to the most common
baseline technique of simply using distance. We then demon-
strate the performance of variants of our search algorithm
which use different sets of features and optimization pro-
cedures. We compare these to baseline methods based on
distance, popularity, and user history.

3.1 Spatiotemporal Models
To better understand how spatiotemporal models of venues

improve unpersonalized venue search in dense urban areas,
we present an experiment that compares different spatiotem-
poral models for predicting check-ins in a small 10-block ra-
dius of downtown Manhattan. Figure 7 shows a sample of
the 143 thousand check-ins that have occurred at 127 popu-
lar venues near Bleecker and Jones St. color-coded by venue.
We have removed any venues from this set with less than 100
check-ins (which represents less than 5% of the total num-
ber of check-ins). The dataset is then divided 90%/10% into
training and testing sets.

Given only the latitude, longitude, and timestamp of each
check-in, the goal is to predict which venue a user checks
into (precision @1). We consider three models for this task.
The baseline model simply selects the nearest venue based
on distance. The spatial Gaussian mixture model uses a
probabilistic model, as described in Section 2.1. The num-



Figure 7: A scatterplot showing a sample of the
143 thousand check-ins that have occurred in the
few blocks near the corner of Bleecker and Jones
St. in Manhattan. Each check-in is color-coded
by the venue to which it belongs. We see that al-
though some popular venues can easily be distin-
guished from others nearby, there is a substantial
overlap of check-ins in some areas which makes dis-
crimination difficult.

ber of Gaussians was limited between 1 and 5 and selected
via cross-validation. A venue is then predicted by finding
the venue which maximizes the probability under this spa-
tial distribution. The full spatiotemporal model uses the
mixture of Gaussians, the timeliness feature, as well as pop-
ularity combined as a linear sum of log-likelihoods.

Table 2 shows the test accuracy of the 3 different models.
We see that modelling venue shape offers 46% lift over a sim-
ple distance-based algorithm, and incorporating timeliness
and relative popularity yields a 112% lift in performance.

3.2 Learning to Rank
In this section, we describe our experiments to determine

the optimal features and training procedure for our search al-
gorithm. Using the methodology discussed in Section 2.3.1,
we collected 38 thousand examples of successful worldwide
venue searches, randomly sampled from the week of 6/24/12,
where a user selected the correct venue from a rank-ordered
list presented to them. Our goal is to create a better ranking
algorithm which ranks the correct venues at a higher posi-
tion. The 38 thousand venue searches are comprised of over
4 million candidate venues and are split 70%/15%/15% into
training, validation, and test sets respectively. The mod-
els for these venues were built using 282 million check-ins,
collected over the 2 years prior to the query date.

We explore a variety of different combinations of features
and models, including linear regression, coordinate ascent,
and LambdaMART [33]. For the coordinate ascent model,
we use domain knowledge to construct explicit cross-products
that capture important non-linearities (such as spatial score
× popularity). The LambdaMART algorithm automatically

Model P@1

Baseline (nearest by distance) 0.130
Spatial Gaussian mixture model 0.193
Spatiotemporal models 0.277

Table 2: Comparison of different models of venues.
We see that using more complex spatial models and
incorporating temporal signals greatly improves the
accuracy of the search algorithm.

Model P@1

Random 0.009
Spatial only 0.201
User history only 0.358
Popularity only 0.143
Linear regression: spatial + temporal 0.230
Linear regression: spatial + temporal + popularity 0.251
Linear regression: all features 0.434
Coordinate ascent: all features w/ nonlinear pairs 0.493
LambdaMART: all features 0.531

Table 3: The precision of various models and sets of
features in ranking venue search results.

captures non-linearites by forming an ensemble of 2000 de-
cision trees. Table 3 summarizes the performance of these
different techniques in terms of precision at 1 on the held-out
test set. The NDCG@5 for our best model is 0.686, and re-
call @5 is 0.822. Figure 9 shows our recall as rank increases.
We see that using our best model, we find the correct result
in one of the top 5 positions in 82% of searches and in the
top 10 positions in 91% of searches.

The results in Table 3 indicate that distance and personal
history are informative features; however their individual
performance is poor when compared to a full model trained
using a combination of many features. We also find that
linear models can perform poorly for ranking when many
features are combined. Carefully constructing non-linear
pairs of features or using a robust non-linear model such
as LambdaMART is crucial for combining many disparate
signals into an accurate model.

3.3 Analysis
To better understand when venue search is difficult we

more closely examine how the performance of our search al-
gorithm degrades based on varying degrees of personal his-
tory, venue density, and reported horizontal accuracy from
the GPS of the mobile device. In Figure 8(a), we see the
performance of the linear model as a function of the number
of nearby venues a user has been to when they perform a
search. Because users are more likely to check into venues
they have visited before, the model performs best when there
are a small number of venues nearby that a user has previ-
ously visited. As the number of nearby venues in the user’s
history increases, this history has less predictive value, and
the accuracy of the model decreases. In Figure 8(b), we see
performance as a function of the number of venues within
a 1km radius of the user’s query. As expected, we observe
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Figure 8: Many factors influence the precision of venue search: the familiarity of users with nearby venues
(left), the density of nearby venues (middle), and the reported horizontal accuracy from the mobile device
(right).
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Figure 9: Recall as a function of the rank cut-off.

that performance is higher in areas with fewer venues, and
degrades in dense urban areas. Similarly, Figure 8(c) shows
that as the horizontal accuracy reported by the device in-
creases, performance also degrades.

4. DISCUSSION
There are now over 5 billion consumer mobile devices in

the world that are constantly reporting a signal of latitudes,
longitudes, and timestamps [4]. As location data become
more pervasive, the need to map these signals to semanti-
cally meaningful locations becomes increasingly important.
In this article, we have demonstrated a spatial search engine
for mapping noisy location estimates from mobile devices to
points of interest. Furthermore, we show that simple base-
line techniques for this task, such as those based on distance
and popularity, are insufficient for accurately predicting a
user’s location. By leveraging machine learning algorithms
for ranking and rich spatiotemporal models of places and
users, our spatial search engine achieves significant lift in
performance over these common baselines as well as previ-
ously reported results.

4.1 Future Work
We aim to incorporate more sophisticated models of user

behavior by exploiting additional metadata such as cate-
gories of venues and demographics of users (e.g. age, gen-
der, etc.). These additional signals would allow us to better
distinguish between nearby venues that are frequented by
different types of people (e.g. a nail salon next to barber
shop). Furthermore, a better model of user dynamics could
improve accuracy as well, by leveraging information about
common transitions between locations (both for the user as
well as in aggregate).

We plan to improve the modeling of venues in the retrieval
stage of our search algorithm to better incorporate venue
shapes (building on the Gaussian mixture models described
in Section 2.1) instead of points, eliminating the need for
supplementary retrieval of large venues. We also plan to
incorporate weather information, modeling the popularity
changes of venues under different situations (e.g. parks are
more popular when it is sunny and art galleries are more
popular when the weather is inclement).

We are striving towards a venue search system that can
support not only millions of explicit nearby searches every
day but millions of implicit searches as well, generated by
users’ mobile devices as users explore their cities. A passive
venue search system would react to changes in a user’s loca-
tion and present relevant local information, such as details of
nearby events, tips from friends, or suggestions about where
to go next. Every location update can act as a search into
local real-time information, surfacing highly contextual re-
sults that can help people better understand and navigate
the real world.
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