
Wrapper Induction for End-User Semantic Content
Development

Andrew Hogue
MIT CSAIL

Cambridge, MA 02139

ahogue@theory.lcs.mit.edu

David Karger
MIT CSAIL

Cambridge, MA 02139

karger@theory.lcs.mit.edu

ABSTRACT
The transition from existing World Wide Web content to the
Semantic Web relies on the labeling and classification of ex-
isting information before it is useful to end-users and their
agents. This paper presents a wrapper induction system
designed to allow end-users to create, modify, and utilize se-
mantic patterns on unlabeled World Wide Web documents.
These patterns allow users to overlay documents with RDF
classes and properties, and then to interact with this labeled
content within a larger Semantic Web application, such as
Haystack.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services; H.5.2 [Information Interfaces and

Presentation]: User Interfaces

Keywords
Semantic Web, Haystack, RDF, wrapper induction

1. INTRODUCTION
The Semantic Web promises to “bring structure to the mean-
ingful content of Web pages, creating an environment where
software agents roaming from page to page can readily carry
out sophisticated tasks for users.” [1] Information which is
currently prepared only for humans to read will be richly
labeled, classified, and indexed to allow intelligent agents to
schedule our appointments, perform more accurate searches,
and generally interact more effectively with the sea of data
on the Web.

These advances, however, rely on the accurate semantic la-
beling of data that currently exists only in human-readable
format on the World Wide Web. Normally, this labeling
would be a task for content providers, as they have easy
access to the relational data which makes up the pages, as
well as the ability to alter the existing published content.

In this work our goal is to provide a tool which allows end-
users, rather than content providers, to author and utilize
their own semantic labels for existing content. By giving
users control over semantic content, we hope to reduce the
reliance of the Semantic Web on content providers and speed
its adoption.

Our system allows users to create semantic patterns, also
called wrappers, by simply highlighting relevant features of
a web page in a browser. From these positive examples, a
flexible, reusable pattern is induced. The user may then give
the wrapper semantic meaning by overlaying it with RDF
statements about the classes and properties it represents.

On subsequent visits to the same page (or to similar pages),
the predefined pattern is reevaluated. When matches are
found, instances of the semantic classes represented by the
pattern are created on the fly. These objects are overlaid
on the browser, allowing us to reify the matched items into
first-class objects, rather than flat text.

By integrating this tool into the Haystack [10] information
management environment, these semantic overlays create a
rich environment in which the user may interact with con-
tent on the Web. For instance, a pattern defined on a page
containing upcoming seminars would allow the user to right-
click and add an interesting talk to their calendar. Patterns
defined on news sites would allow the user to create, modify,
and subscribe to their own RSS feeds.

We begin in Section 2 by surveying existing work on wrapper
induction, as well as current user interfaces for labeling and
manipulating semantic information on the Web. Section 3
describes the user interface which allows for pattern induc-
tion as well as interaction with existing patterns. In Section
4 we develop our underlying pattern induction algorithm,
which utilizes the hierarchical nature of HTML to create ac-
curate, reusable patterns. Finally, in Section 6, we conclude
with a discussion of future directions and improvements.

2. RELATED WORK
Existing Semantic Web projects have tended to focus on
enabling content-providers to produce semantic content, and
end-users to consume it, whereas few have allowed end-users
to create their own metadata.

The Annotea project [4] is a Web-based system which allows
users to add descriptive metadata to individual pages. Im-

Figure 1: Creating a pattern on a talk announcement page.

plemented using current web standards, users of an Annotea-
enabled browser may create annotations and associate them
with text within a given document, or with the page as a
whole. Although annotations are described using RDF, and
could, in theory, be used to create semantically labeled con-
tent, each annotation applies to a specific node in a specific
page, and there is no way to generalize them to be applied
to repetitive content. Similarly, the concept of Sticky Notes
for the Semantic Web [5] has been proposed, but does not
allow the application of existing ontologies to Web data.

One interactive system which enables users to iteratively de-
velop reusable patterns on the Web is LAPIS [8]. Patterns
are developed using a language called text constraints, spec-
ifying operators such as before, after, contains, and starts-
with. By using a pre-defined library of parsers which tok-
enize and label the document, users can create patterns of
arbitrary complexity, or allow the system to infer them from
examples. Currently, users may utilize LAPIS to perform
such tasks as simultaneous editing and outlier finding.

Wrapper induction is defined by Kushmerick [7] as the task
of learning a procedure for extracting tuples from a particu-
lar information source from examples provided by the user.
Kushmerick defined the HLRT class of wrappers. These
wrappers were restricted to locating information which is
delimited by four types of flags, the “head,” “left,” “right,”
and “tail.” Subsequent work on wrapper induction involves
hierarchical structure [9], probabilistic models [2, 11], and
hierarchical classifiers [12].

3. USER INTERFACE
Giving users the ability to effectively label and categorize
semantic content on the Web requires an easy, intuitive user
interface. Our wrapper induction algorithm has been imple-
mented within the Haystack information management client,
which gives users a rich set of contextual tools for creating
and manipulating semantic data.

When a user wishes to wrap a page containing semantic
content, they browse to the page, highlight the content,
right-click, and choose “Create a Wrapper” from the con-

text menu. They are then asked to choose a semantic class
which describes the selected content. For example, Figure
1 shows a wrapper being created for a page containing data
with the Talk Announcement semantic class.

Once the user has specified a class for the wrapper, it is
generated using the algorithms described in the next sec-
tion. The user is then provided with visual feedback by
highlighting current matches within the browser. If the cur-
rent wrapper is not general enough, the user may specify
additional examples by simply highlighting the relevant text
and choosing “Add to an Existing Wrapper” from the con-
text menu.

When the user is satisfied with the current wrapper, they
may add additional semantic properties to it. For example,
Talk Announcements have properties such as title, speaker,
date, and time. The user simply highlights the data rep-
resenting one of these properties and chooses “Add a Prop-
erty” from the context menu. This action associates RDF
predicates with certain “slots” in the pattern. For example,
by selecting just the text “Effectively computing the land-
scape...” from the talk announcement above, the user could
assign that part of the pattern the RDF predicate title.

Later, when a user visits a page with existing wrappers,
they are matched against the content. When a match for
a pattern is found, a new instance of the semantic class
represented by the pattern is created and overlaid on the
page. Because the Haystack environment provides content-
specific context menus for semantic data, the user may now
interact with semantic content on the web as if it were a
first-class RDF object.

For example, in Figure 2, the user has right-clicked on one
of the events on the talk announcement calendar. Because a
Talk Announcement wrapper has been defined for this page,
the user is presented with a context menu relevant to that
class, including items such as “Add to My Calendar” and
“Create Talk RSS Feed.” Also note that certain properties
of the Talk Announcement have been filled in, such as its
title.

Figure 2: Utilizing a pattern on a talk announce-

ment page.

4. WRAPPER INDUCTION
The user interface described in the previous section makes it
easy for users to label semantic data on the Web, and later
revisit that data and interact with it. The ability to perform
these actions is enabled by a powerful wrapper induction al-
gorithm which takes advantage of the hierarchical structure
of the DOM of a web page.

Because of the way HTML is rendered in a browser, when
a user selects a contiguous block of a web page, they are, in
effect, selecting a subtree from the page’s DOM1. Thus, by
providing several highlighted examples in the browser, the
user is indicating that several subtrees in the DOM have
both similar syntactic structure and similar semantic mean-
ing.

Our wrapper induction algorithm takes advantage of these
structural similarities by finding the best mapping between
the given example subtrees. The best mapping is defined
as the mapping between the nodes of two trees with the
lowest-cost tree edit distance [13].

Once we have found this best mapping, we create a pattern
by removing any nodes that are unmapped. This creates
a “skeleton” tree which contains only the common nodes
among all examples. Figure 3 gives an example of the best
mapping between two Talk Announcement subtrees, and the
resulting pattern. We note that each example has the same
basic structure, but different content. After the best map-
ping is found, unmapped nodes are removed and replaced
with wildcards. If the user associates RDF predicates with
the pattern, they are bound to these wildcard nodes. For
instance, in Figure 3 the user has bound the wildcards in
the generated pattern to predicates from the talk and dc

schemas.

1In fact, the selection may represent several sibling subtrees,
but similar edit-distance heuristics apply. See Section 5, as
well as the first author’s thesis [3], for more details.

"Bioinformatics..."

"(11:30 AM)"

computing..."
"Efficiently

"CSAIL Student...."

"How Puzzles
Can Dilute..."

A A

B

A A

B

"(4:15 PM)"

A A

B

<talk:series>

<dc:title>

<talk:time>

TD

TD TD

Figure 3: Generating a wrapper from the best map-

ping between two example trees.

Once the general pattern is created, we can match it against
the document by simply looking for subtrees on the page
which have the same structure. First, we find nodes in the
document with the same tag as the root of the pattern. For
each of those nodes, we attempt to match the children of
the document node against the children of the pattern. This
process continues recursively until every node in the pattern
is bound to a node in the document, resulting in a match,
or we fail to find a binding.

For each match that is found, a new instance of the RDF
class associated with the wrapper is created. The wildcards
in the pattern (which resulted from removing unmapped
nodes) are bound to nodes in the document. If the user
has labeled these slots with RDF predicates, the matched
text is used to create the properties of the new instance.
This instance may then be supplied to the browser or to an
agent to be used as first-class semantic content.

In addition to the simple removal of unmapped nodes, ad-
ditional heuristics have allowed us to reduce the number of
examples usually needed to form an effective wrapper. One
important heuristic is the recursive collapse of similar nodes
in the pattern. When neighboring subtrees in the pattern
have the same structure, we simply “collapse” them into a
single subtree. Later, when we match the pattern, we allow
the collapsed subtree to greedily match more than one node
in the document.

By applying this heuristic recursively through the pattern
tree, we can create patterns which can match variable-length
lists of semantic items without forming a pattern for each
possible list-length. An example is shown in Figure 4. Here,

TD

A A A

TD

A

<dc:title>

"Talks:"

Computing..."
"Rich
Prob..."

"How Puzzles...""Efficiently

"Talks:"

Figure 4: Collapsing nodes to form a “greedy” wrap-

per

the user has formed a wrapper to match a list of links to
upcoming talks. By collapsing the A nodes into a single
pattern node, we can match any number of talks listed on
the page without forming a new wrapper.

5. EXPERIMENTAL RESULTS
While development is still ongoing, initial experiments in
creating and using these wrappers have shown them to be
widely applicable. Table 1 shows the number of examples
necessary to form a wrapper for several common web sites.

The most common failure mode for our wrapper induction
algorithm deals with semantic classes which span several
neighboring subtrees. If these subtrees do not include all
children of the parent node, it becomes difficult to effectivly
calculate edit distance and perform matching. This causes
failures, for example, with wrapping the Story class on the
New York Times (http://nytimes.com). We are investigat-
ing the use of supplementary tools, such as LAPIS [8] to
alleviate this issue.

6. FUTURE WORK
This interface and algorithm are based on an ongoing Mas-
ter’s thesis [3], and as such they are both very much works
in progress. In addition to the ideas presented here, several
other future improvements have suggested themselves:

Document-level Classes Many times an entire web page
represents a single semantic class, with items on the
page detailing the properties of that class. For ex-
ample, each page from the Internet Movie Database
(http://imdb.com) represents the Movie class, with
items on the page representing properties of that class.
We would like to allow for applying RDF statements
which tie predicates on a page to the page-level class.

Labeling Across Pages Much semantic information tran-
scends page boundaries. For instance, on the CSAIL
events calendar, only the talk’s series, title and
time are listed on the calendar page, while more in-
formation is available by clicking on the title link. We
would like to develop a system which allows semantic
classes and properties to span multiple pages.

Wrapper Verification Web pages are constantly in flux,
and methods for validating wrappers are important [6].
We would like to develop an efficient way to verify that
the semantic content being returned by the wrappers
is still accurate.

URL Semantic Class Examples

http://google.com/search SearchResult 3
http://imdb.com/title Actor 1
http://imdb.com/title Director 2
http://slashdot.org Story 2
http://www.csail.mit.edu/ Person 2
biographies/PI/biolist.php
http://www.csail.mit.edu/ Talk 1
events/eventcalendar/ Announcement

calendar.php

Table 1: Number of examples necessary to form a

wrapper.

Wrapper Sharing The nature of the wrappers defined here
allows them to be easily stored and retrieved. Once
semantic patterns have been created for a page, they
may be shared between users. One can imagine down-
loading a full set of wrappers for a given site and in-
stantly enabling a full Semantic Web experience for
users without the need for each user to author their
own wrappers.

7. CONCLUSIONS
The ability to effectively and meaningfully label informa-
tion on the World Wide Web is vital to the advancement
of the Semantic Web. Normally, this responsibility lies with
content-providers, but this paper has outlined another ap-
proach. By allowing end-users to participate create semantic
wrappers, we can give anyone with a browser the ability to
develop and interact with semantic content.

The key features of the wrappers presented here are that
they are flexible, reusable, and serializable. Once defined,
they transform a standard web page into a rich Semantic
Web environment. Through integration with a rich environ-
ment such as Haystack, we have created a Semantic Web
environment where the user is in control.

8. REFERENCES
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The

semantic web. Scientific American, 284(5):35, May
2001.

[2] D. Freitag and A. McCallum. Information extraction
with HMM structures learned by stochastic
optimization. In AAAI/IAAI, pages 584–589, 2000.

[3] A. Hogue. Tree pattern inference and matching for
wrapper induction on the World Wide Web. Master’s
thesis, Massachusetts Institute of Technology,
forthcoming.

[4] J. Kahan and M.-R. Koivunen. Annotea: an open
RDF infrastructure for shared web annotations. In
World Wide Web, pages 623–632, 2001.

[5] D. Karger, B. Katz, J. Lin, and D. Quan. Sticky notes
for the semantic web. In Proceedings of the 8th
International Conference on Intelligent User
Interfaces, pages 254–256, 2003.

[6] N. Kushmerick. Wrapper verification. World Wide
Web, 3(2):79–94, 2000.

[7] N. Kushmerick, D. S. Weld, and R. B. Doorenbos.
Wrapper induction for information extraction. In Intl.
Joint Conference on Artificial Intelligence (IJCAI),
pages 729–737, 1997.

[8] R. C. Miller and B. A. Meyers. Lightweight structured
text processing. In Proc. of USENIX 1999 Annual
Technical Conference, pages 131–144, Monterey, CA,
USA, June 1999.

[9] I. Muslea, S. Minton, and C. Knoblock. A hierarchical
approach to wrapper induction. In O. Etzioni, J. P.
Müller, and J. M. Bradshaw, editors, Proc. of the
Third International Conference on Autonomous
Agents, pages 190–197, Seattle, WA, USA, 1999. ACM
Press.

[10] D. Quan, D. Huynh, and D. R. Karger. Haystack: A
platform for authoring end user semantic web
applications. In Proc. 2nd International Semantic Web
Conference, 2003.

[11] K. Seymore, A. McCallum, and R. Rosenfeld.
Learning hidden Markov model structure for
information extraction. In AAAI 99 Workshop on
Machine Learning for Information Extraction, 1999.

[12] L. Shih and D. Karger. Learning classes correlated to
a hierarchy. Technical report, MIT AI Lab, 2001.

[13] K.-C. Tai. The tree–to–tree correction problem. J.
Association of Computing Machinery, 26(3):422–433,
July 1979.

