
Thresher: Automating the Unwrapping of Semantic
Content from the World Wide Web

Andrew Hogue 1 2

1 Google Inc.
New York, NY 10018

ahogue@google.com

David Karger 2

2 MIT CSAIL
Cambridge, MA 02139

{ahogue,karger}@csail.mit.edu

ABSTRACT
We describe Thresher, a system that lets non-technical users
teach their browsers how to extract semantic web content
from HTML documents on the World Wide Web. Users
specify examples of semantic content by highlighting them
in a web browser and describing their meaning. We then use
the tree edit distance between the DOM subtrees of these ex-
amples to create a general pattern, or wrapper, for the con-
tent, and allow the user to bind RDF classes and predicates
to the nodes of these wrappers. By overlaying matches to
these patterns on standard documents inside the Haystack
semantic web browser, we enable a rich semantic interac-
tion with existing web pages, “unwrapping” semantic data
buried in the pages’ HTML. By allowing end-users to cre-
ate, modify, and utilize their own patterns, we hope to speed
adoption and use of the Semantic Web and its applications.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services; H.5.2 [Information Interfaces and
Presentation]: User Interfaces

General Terms
Algorithms, Human Factors

Keywords
Semantic Web, Haystack, RDF, wrapper induction, tree edit
distance

1. INTRODUCTION
The Semantic Web promises to “bring structure to the

meaningful content of Web pages, creating an environment
where software agents roaming from page to page can read-
ily carry out sophisticated tasks for users” [5]. Information
currently prepared only for humans will be richly labeled,
classified, and indexed, allowing intelligent agents to sched-
ule our appointments, perform more accurate searches, and
interact more effectively with the sea of data on the Web.
Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

These advances, however, rely on accurately converting
and labeling data that currently exists only in human-read-
able form on the World Wide Web into a language that is
easily manipulated by computers. The proposed semantic
web language, RDF, can be used to record any desired re-
lationship between pairs of objects. A statement is used
to connect a pair of objects—referred to as the subject and
object—with a particular predicate indicating their relation-
ship. Choosing an appropriate collection of predicates and
making statements enables detailed descriptions of objects
using their classes and properties.

Ironically, much of the information presently available on
the web is already stored in relational form, in the “deep
web” of databases backing numerous web portals. The por-
tals use various templating engines to transform their rela-
tional data into human-readable HTML documents. Unfor-
tunately, this transformation obscures much of the (machine
readable) relational structure in the process. The Semantic
Web initiative relies heavily upon content providers to mark
up their content with RDF, as they have easy access to the
relational data behind the web pages, as well as the ability to
alter the existing published content directly. Several tools,
including browsers and distributed search engines for ontolo-
gies, have been developed with the explicit goal of making
it easier for content providers to add semantic markup to
their existing World Wide Web pages.

Current web publishers, however, have been slow to be-
gin this process, as they often have little or no incentive to
mark up their existing documents. Indeed, allowing agents
to extract machine readable data directly from sites might
obviate the need for users to actively visit those sites at
all—an outcome advertising-driven providers might find un-
palatable. As many end-user Semantic Web applications
depend on the existence of useful RDF, its lack of adoption
by content providers has also affected the utility of these
applications.

In this work we present Thresher, a tool that allows end-
users themselves, rather than content providers, to “un-
wrap” the semantic structures that have been buried inside
human-readable html. Thresher extends existing web inter-
faces to give non-technical users the ability to easily “demon-
strate” the extraction of semantic meaning from a web page.
By watching these demonstrations, Thresher learns to ex-
tract analogous semantic content, either within the same
page or from “similar” web pages. By giving users control
over semantic content, we hope to reduce the dependence of



the Semantic Web on content providers and speed its adop-
tion.

Thresher is aimed at sites that present many of the same
type of object on a page or a site—such as movies at the
Internet Movie Database, recipes at Epicurius, or stories
at Slashdot. Such sites often create their web pages by
feeding their relational data through a templating engine—
essentially “filling in the blanks” of a common layout with
item-specific content. Thresher takes the example of a user
extracting the data about a particular object, and uses it
to reverse engineer the templating engine, in order to ex-
tract corresponding information from web pages presenting
objects with the same template.

Thresher allows users to indicate examples of semantic
patterns, also called wrappers, simply by highlighting and
marking up relevant features of a web page in a browser.
From these positive examples, thresher induces a flexible,
reusable pattern by applying a tree edit distance metric to
find the best mapping between the example’s and a target’s
Document Object Models (DOMs)—essentially their HTML
parse trees. To provide feedback for the user, matches are
displayed directly in the browser. Once a wrapper is created,
the user can give it semantic meaning by indicating the class
(type of object) extracted by the wrapper, as well as mark-
ing up certain portions as describing particular properties of
that object.

To enable semantic interaction with web content, these
predefined wrappers are reevaluated on subsequent visits to
the same or similar pages. When matches are found, in-
stances of the semantic classes represented by the pattern
are created on the fly. These objects are underlaid in the
browser, allowing us to reify the matched items into first-
class objects, rather than flat text.

Thresher is able to “notice” and extract semantic content
into RDF; it gains power when combined with a tool that can
manipulate that RDF. By integrating the Thresher tool into
the Haystack [18] information management environment, we
gain the power to directly manipulate web page content as
semantic objects. For instance, once a pattern is defined on
a page listing upcoming seminars, a user can right click on
any of the seminars on the page and add it to their calendar.
Similarly, given a pattern that extracts individuals from an
organization’s membership page (such as that in the figures
below), a right click can be used to add one of those individ-
uals to an address book, or to send them email. In another
instance, patterns defined on news sites effectively allow the
user to create, modify, and subscribe to their own RSS feeds.

Although wrapper creation is relatively straightforward,
many users may not wish to go through the effort to create
these wrappers themselves. Because the wrappers created
by Thresher are themselves RDF, it is easy to share them
between users. One user creates the wrapper, sends its seri-
alized RDF to another user, who simply installs the wrapper
on their Haystack. One can imagine downloading a full set
of wrappers for a given site and instantly enabling a full Se-
mantic Web experience for users without the need for each
user to author their own wrappers.

We begin in Section 2 by surveying existing work on wrap-
per induction, as well as interfaces for labeling and manipu-
lating semantic information on the Web. To provide a visual
framework for our discussion, we then describe the user in-
terface for Thresher in Section 3. The underlying pattern
induction algorithm and the methods for semantically la-

beling patterns are described in Section 4. We conclude by
discussing experimental results in Section 5 and directions
for future work in Section 6.

2. RELATED WORK
There are several existing Semantic Web efforts that fo-

cus on the process of content creation and semantic label-
ing. However, these projects have tended to focus on con-
tent providers and expert users, rather than allowing non-
technical end-users to create and easily utilize their own
metadata. Below, we consider three types of related work:
tools that let users manually annotate html with seman-
tic structure, tools that let developers hard-code extraction
rules for certain types of semantic content, and tools like
Thresher that learn extraction rules from examples.

2.1 Direct Annotation
The Annotea project [10] is a Web-based system, imple-

mented using current web standards, that allows users to
add descriptive metadata to individual pages. Users of an
Annotea-enabled browser can create annotations and asso-
ciate them with text within a given document, or with the
page as a whole. Although annotations are described using
RDF, and could, in theory, be used to create semantically
labeled content, each annotation applies to a specific node
in a specific page and must be manually created by the user.
There is no way to generalize them to be applied to repeti-
tive content. Similarly, the concept of Sticky Notes for the
Semantic Web [11] has been proposed, but does not propose
to generalize and automate the annotation process from ex-
amples.

2.2 Static Extraction Rules
The MIND SWAP project [8] has created a suite of tools

aimed at giving users the ability to author, search, and
browse Semantic Web documents. These include a program
for semantically tagging delimited files, an editor for co-
creating HTML and RDF documents at the same time, an
interface for labeling non-text content with RDF, and an on-
tology manager for search and browsing. The most relevant
tool to our work is the Web Scraper, which allows users to
extract semantic information from structured HTML docu-
ments. To use the Web Scraper, a user must analyze the
HTML source of a document and provide explicit delimiters
for relevant information. Once the data has been extracted,
an ontology browser is provided for semantic labeling. While
the patterns created by the Web Scraper tend to be more
powerful than those described here because of their explicit
declaration, the interface for defining them is complex, re-
quiring a knowledge of HTML and the low-level structure of
a page. The Thresher system has been designed to be ac-
cessible to non-technical users, and allows pattern induction
and utilization through a standard web browser interface,
via existing well-understood operations such as highlighting
and right clicking on a document.

Similar to Thresher, the news extraction approach pre-
sented by Reis, et. al. [19] utilizes tree edit distance to find
similarities between web pages containing semantic content.
This system takes a highly domain-specific approach, crawl-
ing and clustering news web sites using predefined structural
properties of those sites. A restricted tree edit distance al-
gorithm is then used on all pages within each cluster to
generate a pattern. Several heuristics are then used to au-



tomatically label the title and body of each news article.
This approach demonstrates the power of tree edit distance
for forming reusable patterns on web pages, correctly ex-
tracting news from 87.71% of the sites surveyed. However,
where Thresher relies on the user to provide semantic la-
bels for their selections, this news extraction system relies
on several hard-coded heuristics and rules to complete the
labeling process. Thresher’s end-user approach also allows
content to be extracted from a wide range of sites without
domain-specific code.

The XPath standard [3] is another useful tool for extract-
ing data from hierarchical documents such as XML and
HTML, and several tools such as xpath2rss [17] have been
built with it. Similar to the Web Scraper, though, these re-
quire the user to have a detailed knowledge of the document
and of XPath’s language for describing patterns. Few tools
have been developed to allow intuitive, interactive induction
of useful patterns.

Magpie [6] is a tool for layering semantic information
about known entities over web documents. Drawing from a
database of predefined people, projects, organizations, and
other concepts, Magpie highlights these entities on a web
page at the request of the user. New context menus are
created which allow the user to view the connections be-
tween these entities. Thresher and Magpie are similar in
their approach to overlaying semantic information on web
pages, and allowing users to interact with that informa-
tion. Because of its embedding in the Haystack environment,
Thresher allows more complex interaction with the seman-
tic information found in web pages (for example, emailing
a person whose information is listed on the web). Thresher
also allows the user to create wrappers and imbue them with
semantic meaning, rather than drawing its content from a
predefined database.

2.3 Learning Extraction Rules
One interactive system that enables users to iteratively

develop reusable patterns in various types of documents is
LAPIS [15]. Patterns are developed using a language called
text constraints, specifying operators such as before, after,
contains, and starts-with. By using a pre-defined library
of parsers that tokenize and label the document, users can
create patterns of arbitrary complexity, or allow the system
to infer them from examples. Currently, users may utilize
LAPIS to perform such tasks as simultaneous text editing
and outlier finding; to date it not been applied to the Se-
mantic Web.

FlipDog1, developed by Tom Mitchell at WhizBang! Labs
and now owned by Monster.com, is a commercial system for
automating the extraction of semantic data from the web.
FlipDog was trained to locate information from job postings
on corporate sites, including the employer’s name, the po-
sition, the salary, the job’s description, and other common
fields. This information was then extracted into a central
repository of job postings, allowing it to be easily searched
and correlated.

The Daily You [21] is an automated classification tool
which attempts to classify which portions of a page are “in-
teresting” to the user and which are not. The system is
based on the concept that nearby portions of a web page’s
DOM tree are more likely to be related than distant ones. By
observing users as they browse a site, The Daily You is able

1http://flipdog.monster.com

to classify and remove irrelevant parts of the page like ads
and navigation boxes, while highlighting links that might be
of particular interest to the user. This tree-structured ap-
proach directly influenced Thresher’s heuristics for creating
wrappers.

Wrapper induction is defined by Kushmerick [13] as the
task of learning a procedure for extracting tuples from a
particular information source from examples provided by
the user. Kushmerick defined the HLRT class of wrap-
pers. These wrappers were restricted to locating information
that is delimited by four types of flags, the “head,” “left,”
“right,” and “tail.” Subsequent work on wrapper induction
involves hierarchical structure [16] and probabilistic mod-
els [7, 20]. Our work builds on the conceptual framework of
wrapper induction, extending it with a pattern inference and
matching framework specialized for the DOM (hierarchical
document object model) model of web documents.

Our work embeds in the Haystack [18] information man-
agement client. This system has strong ties to the Semantic
Web, in that it is based on the RDF standard [2] and in-
corporates many standard ontologies, including the Dublin
Core [1] and the Simile project [4]. Through these ontolo-
gies, users of Thresher are provided with an existing base of
classes and properties to assign to wrappers. Another key
benefit of the Haystack interface is that every object is se-
mantically “alive” to the user. This means that Thresher
can provide relevant context menus for any element dis-
played on the screen. For instance, in the interface for com-
posing an email message the “To” and “CC” fields not only
provide context menus for adding additional recipients, but
also provide menus to interact with the actual “Person” ob-
jects behind existing recipients. These semantically-driven
context menus provide a simple, intuitive interface for non-
expert users to create, manage, and use semantically struc-
tured data on the Web.

3. USER INTERFACE
The Thresher interface provides four main functions to

the user, described in more detail below:

1. wrapper creation, from a highlighted example

2. the specifying of additional examples for an existing
wrapper

3. semantic labeling of wrappers with RDF properties

4. interaction with labeled content, via semantic context
menus

The process of wrapper creation begins when the user nav-
igates to a page containing semantic content in the Haystack
web browser. Because the Thresher system is “always on” in
the Haystack browser, creating a wrapper is initiated simply
by highlighting the relevant semantic content on the page.
The user then right-clicks and chooses “Create a Wrap-
per” from the context menu that appears. They are then
prompted to provide additional information necessary for
wrapper creation: the semantic class of the selected object
(what “kind of thing” is being described by the page frag-
ment) and a name for the wrapper (optional, but useful so
that it can be located and modified later). Figure 1 shows
these two steps on the MIT CSAIL faculty page.2 Here

2http://www.csail.mit.edu/biographies/PI/biolist.php



Figure 1: Creating a wrapper on the CSAIL Faculty page.

we are creating a wrapper to match each individual faculty
member, so the corresponding semantic class is Person.

Once the user confirms their choices, the wrapper induc-
tion algorithm (described in the next section) runs in the
background and creates a generalized wrapper from the first
selection. The wrapper is then matched back against the
same page, and each match is highlighted to provide visual
feedback for the user. This highlighting is shown in Figure 2.

While semantic objects may often be unwrapped using a
single example, there are cases where more than one exam-
ple is necessary. Thus, an interface is provided to allow the
user to add additional examples to an existing wrapper. To
do this, the user simply highlights another example on the
page, right clicks, and chooses “Add an Example to a Wrap-
per” from the context menu that appears. They are then
prompted to select the wrapper to modify, and the system
integrates the new example into the wrapper.

The ability to add additional examples is essential for
pages without enough information on a single page to create
an effective wrapper—for example, when only one instance
of the target object is present on any one page. In these
cases, the user may need to provide the first example on
one page, and an additional example on another page. The
mechanism for adding additional examples described above
works well for these cases - the user selects the additional
example on the new page and chooses the existing wrapper
from the list that appears.

Once the user is satisfied with the matches the wrapper
provides, they may begin semantic labeling of the pattern,
marking up the relationships described in the html fragment.
To do this, the user selects a portion of one of the matches
on a page that represents a semantic property. They then
right-click to bring up the context menu and select “Add a
Property to this Wrapper.” The user is then provided with
a dialog in which they are asked to select from a list of prop-
erties that are applicable to the class assigned to the given
wrapper. This list is generated by inspecting the schema

associated with the type of object being unwrapped, and
determining which predicates apply to that type of object
(more formally, we query the schema to find out which RDF
predicates have the current wrapper’s semantic class as their
rdfs:domain). So, for example, when the type of object is
Person, then available predicates include Name and Ad-

dress. General properties that apply to all classes, such
as dc:title, are also listed. Once the user has selected a
property, it is bound to the wrapper as described in the next
section. An example of this process, and the visual feedback
given to the user after the pattern is updated, is shown in
Figure 3,

Finally, once a wrapper is fully designed, Thresher allows
users to interact with web content in a fully semantic way.
Every time a user browses to a page with a wrapper, we
execute the matching algorithm for the wrapper. Any ele-
ments in the document that match the pattern are “under-
laid” with dynamically generated semantic objects. These
objects are fully-functional semantic instances, with proper-
ties supplied by the RDF predicates assigned during wrap-
per induction. Because Haystack provides content-specific
context menus for semantic data, the user may now inter-
act with semantic content in the web page as if it were a
first-class RDF object.

For example, in Figure 4, the user has right-clicked on a
faculty member in the CSAIL directory. Because a Person

semantic wrapper has been defined for this page, the user
is presented with a context menu relevant to that class.
This includes such items as “Remind me to contact this
party” and “Compose Email Message.” Using properties of
these objects drawn from the page, commands like “Com-
pose Email Message” will be passed the appropriate informa-
tion (in this case, an email address) to execute their actions.

4. PATTERNS
The user interface described in the previous section makes

it easy for users to label semantic data on the Web, and



Figure 2: Feedback during wrapper creation by
highlighting matched elements.

Figure 3: Adding a property to a wrapper.

later revisit that data and interact with it. These actions
are supported by wrapper induction and semantic labeling
algorithms that take advantage of the hierarchical structure
of the DOM of a web page.

4.1 Wrapper Induction
We begin by describing our algorithm for learning a pat-

tern from user-provided examples. Because of the way HTML
is rendered in a browser, when a user selects a contiguous
block of a web page as an example, they are, in effect, se-
lecting a subtree from the page’s DOM. Our postulate is
that instances of the target semantic object are rendered
into a particular shape of subtree. Some portion of that
subtree is the actual content of the object being viewed,
while another portion reflects the “layout” of that content.
For repeated, semantic objects, we expect to see the general

Figure 4: Interacting with an existing wrapper on
the faculty directory page.

layout repeated, while we expect the content to vary for each
instance.

Given a set of example subtrees, our task is to distin-
guish “content bearing” subtrees from all other HTML on
the page, and then to distinguish the layout portion of those
trees from the content portion. Our approach to both prob-
lems is to be maximally conservative: we look for a pattern
that all the examples fit, but that generalizes as little as pos-
sible subject to that constraint. Intuitively, we expect that
some part of each example is exactly the same, that this re-
peating identical portion is sufficient to identify occurrences
of the object, and that it represents the (unvarying) layout
portion of the pattern. This repetition is generally a result
of the way in which pages are generated. When a content
provider wishes to display a large number of related items,
each of the same semantic class, they tend to automate the
process. As a result of this automation, each instance of
that semantic class on the page tends to have the same ba-
sic HTML structure, “filled in” with different text content.

In practice, content sometimes influences layout. Thus,
we cannot simply declare that all object presentations must
have identical layouts—we need to introduce some flexibil-
ity. In order to identify the repeating elements, we attempt
to “align” pairs of examples, matching up corresponding ele-
ments of each subtree. Those elements that can be matched
up are presumed to be (unvarying) layout, while those that
do not match are taken to be (variable) content. In order to
perform the alignment, the best mapping is defined as the
mapping between the nodes of two trees with the lowest-cost
tree edit distance [22].

Once we have found this best mapping, we create our
pattern by starting with one of the examples and replacing
any nodes that do not recur (match) in the other exam-
ples with wildcard nodes. This creates a “skeleton” tree
that contains only the common nodes among all examples.
For example, Figure 5 shows the best mapping between two
TalkAnnouncement subtrees, as well as the resulting pat-
tern. The best mapping procedure preserves those DOM



A

*

*

*

"Bioinformatics..."

"(11:30 AM)"

computing..."
"Efficiently

"CSAIL Student...."

"How Puzzles
Can Dilute..."

A A

B

A A

B

"(4:15 PM)"

A

B

TD

TD TD

Figure 5: Generating a wrapper from the best map-
ping between two example trees.

elements that are in common between the examples, while
discarding those that exist only in one example or another.
In this way, Thresher “reverse engineers” the scripts that
created the page, separating the common layout structures
they produce from the variable semantic content that they
fill in.

Once the general pattern is created, we can match it
against the document by simply looking for subtrees on the
page that have the same structure. First, we find nodes in
the document with the same tag as the root of the pattern.
For each of those nodes, we attempt to align the children
of the document node against the children of the pattern.
A valid alignment is one in which each pattern node maps
to at least one document node. This process continues re-
cursively until every node in the pattern is bound to a node
in the document, resulting in a match, or we fail to find a
binding.

In more detail, we begin by trying to align the root, P [0],
of the pattern with each node in the document to be matched,
T . If we find a node v such that P [0] and v match, we re-
curse, attempting to align the children of P [0] with the chil-
dren of v. We take the list of children of P [0] and of v, and
attempt to find an alignment. An alignment is a mapping
from the children of P [0] to the children of v where every
child of P [0] maps to at least one child of v, and if P [q] maps
to T [r] and P [s] maps to T [t], and P [q] is a left-sibling of
P [s], T [r] is also a left-sibling of T [t]. That is, sibling order
is preserved in the alignment.

Figure 6(a) shows a valid alignment between the a list of
pattern children and a list of document children. Figure 6(b)
shows a pattern-document pairing with no valid alignment.
Note that the ‘‘Text’’ and B nodes do not align in Figure
6(b) because sibling order must be preserved.

(c)

A A

A B A"Text"

"Text"Pattern:

Document:

A

A B A

A A

A A A B A"Text"

"Text"Pattern:

Document:

(a)

(b)

"Text"Pattern:

Document: "Text"

B

Figure 6: Examples of aligning two lists of child
nodes. (a) shows a valid alignment. (b) shows a pair
with no valid alignment. (c) shows a valid alignment
using the list heuristic.

4.2 A List Heuristic
A common occurrence led us to introduce an important

heuristic. If the user’s selection contains a set of similar, re-
peating elements (for instance, rows of a table or an HTML
list), the wrapper algorithm as described above will create
a pattern with the exact number of repeated elements in
the example. For instance, a table with three rows will cre-
ate a pattern with three rows. In many instances, however,
a semantic object may incorporate a variable length list of
relationships. For example, a recipe might list a variable
number of ingredients, a movie a variable number of actors
in the cast, or a news site a variable number of news arti-
cles under a given heading. Trees representing such records
with different-length contents do not align well under the
standard edit distance metric.

List collapse deals with this variation by collapsing highly-
similar neighboring elements into a single wildcard node.
During matching, this wildcard is then allowed to match
multiple elements. An example of this collapse is shown
in Figure 7, where a set of anchor tags is collapsed into a
single wildcard node. Later, any number of links may be
matched by this wrapper, provided they fall within a TD

and are preceded by the text “Links:”. An example of this
alignment matching step is shown in Figure 6(c).

To determine when neighboring trees are sufficiently sim-
ilar to be collapsed, we use the same edit distance metric as
we use to match full patterns. When the edit distance be-
tween two adjacent subtrees is sufficiently low, we collapse
them. Our measure of similarity is the normalized cost, γ̂,



*

AAA

TD TD

A"Links:"

"CNN" "Slashdot" "NY Times"

"Links:"

Figure 7: Generating a wrapper with list collapse.

of the edit distance between the two subtrees, defined as:

γ̂(T1 → T2) =
γ(T1 → T2)

|T1| + |T2|
,

where γ(T1 → T2) is the cost (edit distance) of the best
mapping between subtrees T1 and T2. Because the most
expensive mapping involves deleting all of T1 and inserting
all of T2, and we charge a cost of 1 per node inserted or
deleted, we also know that

0 ≤ γ̂(T1 → T2) ≤ 1

for any mapping T1 → T2. This normalization of the cost
allows us to set an absolute cost threshold for the list collapse
heuristic described above.

4.3 Finding More Examples
The above heuristic “coped with” lists; in another heuris-

tic we take advantage of them. To reduce user workload, we
would like to minimize the number of examples a user needs
to provide in order for the system to learn a useful pattern.
To provide additional example subtrees without asking the
user for another selection, we look to the nodes neighboring
(with the same parent as) the root of the user’s selection. For
each neighboring subtree, we compute the normalized cost
of the best mapping between it and the original selection.
If this cost is less than some threshold, we automatically
consider it as an additional example for the wrapper.

Again, we justify this heuristic by noting that seman-
tic content often appears in “list” form on the web, with
multiple instances of the same type of content appearing in
neighboring nodes of the DOM tree. Thus it is a plausible
assumption that nodes neighboring the root of the user’s se-
lection are also instances of the same semantic type. This
assumption has been born out by experimental trials. By
using a tree edit distance threshold to weed out nodes, we
help to ensure that this heuristic does not pick up spurious
examples.

4.4 Semantic Labeling
Once a wrapper has been created, Thresher must pro-

vide a means for applying semantic meaning to it. When
we created the patterns, we began by taking a single, spe-
cific instance, then generalized it by mapping it to other
instances, removing nodes that the instances did not have
in common. In semantic terms, what we did by removing
these specific instance nodes was map the instances into a
generic description of the structure of the semantic class they
represent. Because the pattern itself is a general description
of a semantic class, we simply bind the class to the entire
pattern—i.e., we posit that any html matching the pattern
represents an instance of the given class.

<TalkAnnouncement>

A A

B

<talk:series>

<dc:title>

<talk:time>

TD

Figure 8: Labeling a wrapper with semantic mean-
ing.

In addition, when we found nodes that differed between
examples, our pattern induction algorithm changed these
nodes into wildcards. Because these wildcards provide a di-
rect mapping between the wrapper’s structure and the vari-
able features contained in the web page’s structure, they
make a natural binding location for our semantic proper-
ties. Thus, when the user selects a part of the DOM and
applies a semantic property to it during the wrapper cre-
ation process, we simply bind the RDF predicate represent-
ing the property to the selected node. Figure 8 shows the
pattern of Figure 5 now labeled with a semantic class and
with properties bound to its wildcard nodes.

The matching process now provides a means to extract
structured semantic content from a web page. Each time we
find a match to our pattern, we create an instance of the
semantic class it represents. The wildcards in the pattern
(which resulted from removing unmapped nodes) are bound
to nodes in the document. If the user has labeled these slots
with RDF predicates, the matched text is used to assign the
properties of the new instance. This instance may then be
supplied to the browser or to an agent to be used as first-
class semantic content.

5. EXPERIMENTAL RESULTS
The development of the Thresher wrapper induction sys-

tem was based on a survey of popular web sites containing
a variety of semantic information.3 Table 1 gives a brief
summary of our results on some of these sites.

Overall, our experiments validate our hypothesis that edit
distance can create flexible patterns from few examples. On
numerous sites, as few as one or two examples are enough
to create a useful pattern. For example, Figure 9 shows the
wrapper that was induced for the SearchResult class on
http://google.com. We were able to create this wrapper
from a single example on the search results page by gleaning
additional examples from the selection’s neighboring nodes,
as described in Section 4.3.

Figure 10 shows the wrapper for the Actor property on
http://imdb.com, an interesting example of the effective-
ness of our list collapse heuristic. This pattern was also cre-
ated with a single example by highlighting one cast member.
The list collapse heuristic then merged the TR nodes into a
single pattern node, which matches every cast member in the
list. It is interesting to note that the subtree containing the
words “Cast overview, first billed only:” was not collapsed,
despite having the same tag name at its parent node. This

3For a complete listing of these sites and the related exper-
imental results, see the first author’s Masters thesis [9].



Site URL Semantic Class Examples Comments
Required

Google http://google.com/search SearchResult 1 Context heuristic found more
examples

Yahoo! http://yahoo.com/search SearchResult 1 Context heuristic found more
examples

Weather.com http://weather.com LongRange 2 List collapse
Forecast

IMDB http://imdb.com/title Actor 1 Context heuristic found more
examples

IMDB http://imdb.com/title Director 2 Examples on multiple pages
IMDB http://imdb.com/title Writer 2 Examples on multiple pages
IMDB http://imdb.com/title Movie fail Could not wrap full-page class
Slashdot http://slashdot.org StoryIcon 1
Slashdot http://slashdot.org StoryPoster 1
Slashdot http://slashdot.org StoryLink 2
CSAIL http://www.csail.mit.edu/ Person 2 Second example necessary for
Directory biographies/PI/biolist.php faculty without a web page
CSAIL Event http://www.csail.mit.edu/ Talk 2 Second example necessary for
Calendar events/eventcalendar/calendar.php Announcement talks not in a series
MIT Course http://student.mit.edu/ Course 1
Catalog catalog/*
Mozilla http://bugzilla.mozilla.org/ BugStatus 2 Examples on multiple pages
Bugzilla show bug.cgi
ESPN MLB http://espn.com/mlb/ BaseballGame 5 Extra examples necessary due to
Scoreboard scoreboard multiple slots in box scores
Java API http://java.sun.com/j2se/ JavaClass fail Could not wrap full-page class
Reference 1.4.2/docs/api/index.html
Java API http://java.sun.com/j2se/ Method 2 Second example necessary for
Reference 1.4.2/docs/api/index.html variable number of arguments
50 States http://50states.com/* StateCapital 2 Examples on multiple pages
EBay http://cgi.ebay.com/ AuctionTitle 2 Examples on multiple pages

ws/eBayISAPI.dll
EBay http://cgi.ebay.com/ Auction 2 Examples on multiple pages

ws/eBayISAPI.dll StartingBid

Barnes & http://search.barnesandnoble.com/ Book fail Could not wrap full-page class
Noble booksearch/isbnInquiry.asp
Barnes & http://search.barnesandnoble.com/ BookTitle 2 Examples on multiple pages
Noble booksearch/isbnInquiry.asp
Barnes & http://search.barnesandnoble.com/ BookPrice 2 Examples on multiple pages
Noble booksearch/isbnInquiry.asp

Table 1: Number of examples necessary to form a wrapper.

subtree had a higher edit distance cost, and because of this
our algorithm correctly inferred that it did not contain the
same type of semantic content. Instead, this subtree serves
as a “flag” that allows our pattern to match only the list of
actors and exclude other elements that do not begin with
the text “Cast overview...”

Despite these and other successes, there are several sites
where we either failed to induce a wrapper, the wrapper
was incorrect, or generating a valid wrapper took numerous
examples. Several of these failure modes include:

Full-page Classes Many of the semantic classes we exam-
ined were “full-page.” On http://imdb.com, for ex-
ample, the entire page represents a single instance of
the Movie class. Because its running time is O(n2),
performing the tree edit distance calculation on entire
pages was prohibitively expensive, and we could not
create wrappers for this information.

Selection Inconsistencies Our system depends on reli-
ably extracting the user’s selection from the browser
and mapping this to the related subtree in the page’s
DOM. In several cases, bugs in the web browser itself4

prevented this, resulting in failed wrappers.

Large Numbers of Semantic “Slots” Wrappers with a
large number of wildcards often take a large number
of examples to generalize properly, and then take a
long time to match, as wildcards provide many more
alignment opportunities than non-wildcard elements.
One example of this is the BaseballGame class on the
ESPN site, where each inning for each team needed
to be generalized and matched separately, creating a
pattern with more than 18 wildcards.

4Thresher has been implemented to work with both Mi-
crosoft Internet Explorer and Mozilla.



TABLE

P

A

*

*

*

* *

*

AFONT

FONT

Cached

TR

TD

AB

...

−

Similar Pages

Figure 9: The SearchResult wrapper on http://google.com.

TDTD TD

*

A *

TRTR

TD

TABLE

....B

first billed only:
Cast overview,

Figure 10: The Actor wrapper on http://imdb.com.

6. FUTURE WORK
In addition to the user interface and algorithmic ideas

described here, several other future improvements have sug-
gested themselves:

Document-level Classes As mentioned in Section 5, there
are many times when an entire web page represents a
single semantic class, with items on the page detailing
the properties of that class, as with the Movie class on
http://imdb.com. We would like to allow for applying
RDF statements that tie predicates on a page to the
page-level class, without running the O(n2) tree edit
distance algorithm on the entire page.

Labeling Across Pages Much semantic information tran-
scends page boundaries. For instance, on the CSAIL
events calendar, only the talk’s series, title and
time are listed on the calendar page, while the speaker,
date, and abstract are only available by clicking on
the title link. We would like to develop a system that
allows semantic classes and properties to span multiple
pages.

Negative Examples There are cases where our system cre-
ates wrappers that are too general in nature based on
the positive examples provided by the user. We would
like to allow the user the ability to make wrappers
more restrictive by giving negative examples.

Natural Language Extraction The wrappers generated
by Thresher can only capture classes and properties
that are defined by nodes in the DOM tree. By ap-
plying natural language techniques, such as part-of-
speech tagging or parse trees, our edit distance tech-
niques might be extended to reach into the raw text
at the leaves of the DOM.

Wrapper Verification Web pages are constantly in flux,
and methods for validating wrappers are important
[12]. We would like to develop an efficient way to ver-
ify that the semantic content being returned by the
wrappers is still accurate.

“Push” Wrappers The wrappers defined here are laid out
in a context of pulling information off of the web. How-



ever, many sites work both ways, also allowing the user
to fill out forms or submit other types of information.
These form entries also have semantic types associ-
ated with them, such as a Person class, with proper-
ties such as name, address, and email. Manuel [14]
has expanded the ideas presented in Thresher to learn
how to perform these “web operations” using data in
the Haystack repository.

Agent Interaction Once defined, our wrappers can reli-
ably extract semantic information from web pages, even
independent of user interaction. This makes them
ideal for interfacing with autonomous user agents. For
example, if a user defines a wrapper using the News on-
tology, an agent that aggregates all of the user’s news
feeds into a collection could notice this and automati-
cally integrate content from the new wrapper.

7. CONCLUSION
In this paper we have described Thresher, a system that

gives non-technical end-users the ability to describe, label,
and use semantic content on the World Wide Web. Pre-
vious work on labeling content on the Semantic Web has
always focused on either content providers (in the form of
page authoring tools) or on technically proficient end-users
who know HTML and RDF. The tools described here rely
on simple interfaces and user actions already present in ex-
isting web browsers, such as highlighting and right clicking
on content.

In addition, we have provided a powerful algorithm for
creating patterns from tree-structured data using the edit
distance between examples. Along with several heuristics to
improve its efficiency and accuracy, this method allows us
to create reliable patterns with as little as a single example
of the relevant content.

The wrappers created by Thresher create an important
bridge between the syntactic structure and the semantic
structure of the web page. In general, this parallel struc-
ture has always existed, abstractly, in the intentions of the
page’s creator and in the interpretations of the page’s reader.
In our system, however, the act of building a wrapper for
this content makes the connection explicit on the user side.
It is from this syntactic-semantic bridge that our wrappers
get their power.

8. REFERENCES
[1] Dublin core metadata initiative.

http://purl.org/metadata/dublin core, 1997.

[2] Resource Description Framework (RDF) specification.
http://www.w3.org/RDF, 1999.

[3] XML Path language (XPath) specification.
http://www.w3.org/TR/xpath, 1999.

[4] Simile: Semantic Interoperability of Metadata and
Information in unLike Environments.
http://simile.mit.edu, 2004.

[5] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific American, 284(5):35, May
2001.

[6] J. Domingue, M. Dzbor, and E. Motta. Handbook on
Ontologies in Information Systems, chapter Semantic
Layering with Magpie. Springer Verlag, 2003.

[7] D. Freitag and A. McCallum. Information extraction
with HMM structures learned by stochastic
optimization. In AAAI/IAAI, pages 584–589, 2000.

[8] J. Golbeck, M. Grove, B. Parsia, A. Kalyanpur, and
J. Hendler. New tools for the semantic web. In
Proceedings of 13th International Conference on
Knowledge Engineering and Knowledge Management,
Oct 2002.

[9] A. Hogue. Tree pattern inference and matching for
wrapper induction on the World Wide Web. Master’s
thesis, Massachusetts Institute of Technology, May
2004.

[10] J. Kahan and M.-R. Koivunen. Annotea: an open
RDF infrastructure for shared web annotations. In
World Wide Web, pages 623–632, 2001.

[11] D. Karger, B. Katz, J. Lin, and D. Quan. Sticky notes
for the semantic web. In Proceedings of the 8th
International Conference on Intelligent User
Interfaces, pages 254–256, 2003.

[12] N. Kushmerick. Wrapper verification. World Wide
Web, 3(2):79–94, 2000.

[13] N. Kushmerick, D. S. Weld, and R. B. Doorenbos.
Wrapper induction for information extraction. In Intl.
Joint Conference on Artificial Intelligence (IJCAI),
pages 729–737, 1997.

[14] R. Manuel. Learning the process of World Wide Web
data retrieval. Master’s thesis, Massachusetts Institute
of Technology, January 2005.

[15] R. C. Miller and B. A. Meyers. Lightweight structured
text processing. In Proc. of USENIX 1999 Annual
Technical Conference, pages 131–144, Monterey, CA,
USA, June 1999.

[16] I. Muslea, S. Minton, and C. Knoblock. A hierarchical
approach to wrapper induction. In O. Etzioni, J. P.
Müller, and J. M. Bradshaw, editors, Proc. of the
Third International Conference on Autonomous
Agents, pages 190–197, Seattle, WA, USA, 1999. ACM
Press.

[17] M. Nottingham. xpath2rss HTML to RSS scraper.
http://www.mnot.net/xpath2rss/, 2003.

[18] D. Quan, D. Huynh, and D. R. Karger. Haystack: A
platform for authoring end user semantic web
applications. In Proc. 2nd International Semantic Web
Conference, 2003.

[19] D. C. Reis, P. B. Golgher, A. S. Silva, and A. F.
Laender. Automatic web news extraction using tree
edit distance. In Proceedings of the 13th International
Conference on the World Wide Web, pages 502–511,
New York, NY, 2004.

[20] K. Seymore, A. McCallum, and R. Rosenfeld.
Learning hidden Markov model structure for
information extraction. In AAAI 99 Workshop on
Machine Learning for Information Extraction, 1999.

[21] L. K. Shih and D. Karger. Using URLs and table
layout for web classification tasks. In Proceedings of
the 13th International Conference on the World Wide
Web, pages 193–202, New York, NY, 2004.

[22] K.-C. Tai. The tree–to–tree correction problem. J.
Association of Computing Machinery, 26(3):422–433,
July 1979.


