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Abstract

Business-to-customer platforms have become a popular option
for digital and physical product shopping, accounting for high
portions of total retail sales. Over the last decade, consider-
able effort has been directed towards capturing customer pref-
erences and choices for recommendation and sales prediction
purposes in large domains like music and shopping. How-
ever, modelling the dynamics of customer behaviour in the case
of choice-constrained spaces has remained largely unexplored.
Yet, accurate behaviour forecasting for meal-kit-delivery ser-
vices, one such choice-constrained platform, is crucial for op-
timal inventory planning and control and for reducing food
waste.

In this work, we formulate customer behaviour within
choice-constrained spaces as a multivariate multinomial prob-
lem, in order to capture the influence that multiple items may
have on the final choice of customers. We will show how
training our models using an autoregressive scheme enables
predicting future user choices, and how this prediction can
be corrected over time, using the data available from service-
customer interaction. We compare the performance of logistic
regressions and random forests in predicting the weekly pur-
chase behavior of individual users, and we use these models
to demonstrate high accuracy in predictions of the aggregate
number of orders placed by all users each week.

1 Introduction

E-commerce growth has continuously outpaced the overall re-
tail market over the past six years. As a result, online sales
account for an increasingly large portion of total retail sales.
It was projected that, in 2016, e-commerce generated an es-
timated 8.7% of all retail spending worldwide, with sales of
about $1.9 trillion [9].

E-commerce platforms distinguish themselves from one
another based on several factors, including their catalog of
products as well as how and where those products are sourced.
Within the family of e-commerce platforms, business-to-
customer (B2C) companies sell their online goods to con-
sumers, who are the end users of the companies’ products or
services. Such platforms differentiate, primarily, by the type of

product being offered. Today, the majority of B2C sale volume
is for physical goods offered by online marketplaces [8]. These
types of B2C companies must deal with finding optimal solu-
tions for storing and insuring their inventory, shipping items,
and preventing item breakage [13]. Other B2Cs are more fo-
cused on digital goods like music, movies, audiobooks, videos
and images. Compared to their more popular counterparts of-
fering physical goods, businesses offering digital products have
the advantage of not needing inventory storage or physical de-
livery, although they may face other issues like piracy, con-
sumer rights legislation that varies across countries, and in-
creased competition due to the increasing popularity of selling
digital goods [6]. The third type of B2C company belongs to
the category of online services like consulting, web design and
development, and content writing and editing.

In recent years, a new category of retailers offering phys-
ical goods has emerged within the first B2C category above,
focused on delivering perishable goods directly to consumers.
These companies include online grocery shopping and meal-kit
delivery. Meal-kit delivery retailers, such as Blue Apron1 and
Hello Fresh2, offer weekly recipes along with pre-portioned in-
gredients and step-by-step instructions that allow customers to
easily cook the meals themselves, thus lightening the burden
of figuring out what to eat and needing to shop for groceries.
Since these retailers’ ingredients are pre-portioned, there is less
risk that the purchased food will spoil and thus go to waste
[21]. What distinguishes these retailers’ services from other
physical-product-based businesses is the perishable nature of
the product being offered: because the ingredients will spoil
quickly, businesses must consider the seasonal availability of
their products, and they must work to offer innovative pack-
aging, quick transport, and stable delivery times, in order to
maximize freshness and avoid product spoilage.

Given the significant growth that these e-commerce plat-
forms are experiencing [9], demand, sales, and inventory fore-
casting have become crucial components of such businesses.
Precise forecasting can enable accurate predictions of future
revenue, less wasted inventory through a stricter inventory con-
trol system, optimized staffing costs through earlier awareness
of needed personnel, and better customer satisfaction [12]. As
a side effect of the ever-growing popularity of these forecasting
initiatives, businesses now have richer purchasing and activity
logs, which give them increasingly detailed information about

1https://www.blueapron.com/
2https://www.hellofresh.com/



their customer preferences. As has been shown, these data can
be effectively leveraged to build highly accurate machine learn-
ing models of consumers’ taste and ordering behaviour [1, 23].

The importance of accurate sales forecasts on efficient in-
ventory management has long been recognized. Early attempts
to model time-series data on sales tried to capture the relation-
ship between retail stocks and sales at the aggregate level [3]
and study the variations in consumer demand [24]. Later ap-
proaches helped to overcome the difficulties intrinsic to linear
models by investigating the use of neural networks [2, 5], re-
gression splines [15], and the combination of neural networks
with linear predictors [7, 14]. Predicting customer preferences
on online e-commerce platforms in general has usually been
addressed in isolation from the problem of predicting sales vol-
ume, perhaps due to the fact that unconstrained services offer
a very large catalog of items to choose from. Modeling the dy-
namics of customer choices in such highly dimensional spaces
is computationally hard.

On the other hand, meal-kit delivery services present cus-
tomers with a much smaller set of items and, as a result, repre-
sent an excellent case study to try to identify both how prefer-
ences towards those items change over time and how customer
choice is influenced by the items that are simultaneously of-
fered at any given point in time. Using the example of Blue
Apron as one of the leading businesses in this domain, we will
introduce a formulation that is general enough to describe the
prediction problem at hand. We will then show how to con-
struct models based on our theoretical framework that can be
used to effectively capture the behaviour of the customers down
to the level of individual preferences over the items being of-
fered. We will finally show that our models are accurate at pre-
dicting overall sales trends, as well as users’ choices regarding
individual items.

The rest of this paper is organized as follows: Section 2
introduces the specific prediction problem considered in this
work. The theoretical framework is presented in Section 3,
and its implementation is discussed in Section 4. In Section
5 we show how the predicted customer behaviour can be cor-
rected with data available from service-customer interactions.
Empirical results are presented in Section 6. Future research
directions are discussed and proposed, and conclusions are pre-
sented, in Section 7.

2 Use Case: Prediction of Blue Apron
Customers’ Behaviour

Meal kit delivery services present their customers with a re-
stricted menu of weekly recipes, each with pre-portioned in-
gredients. These recipes are decided in advance by the com-
pany, in order to ensure that most of the ingredients are in sea-
son, arrive fresh, and do not require considerable food preser-
vation and refrigeration. This restriction of deciding recipes
in advance constrains the type and amount of ingredients that
are to be purchased, helps to reduce inventory volatility, and
contributes to improved inventory planning and reduced food
waste.

In the case of Blue Apron there is a minimum and max-

imum number of recipes that a user can choose from every
week, and there is also a limit to the number of times that the
user can choose the same recipe. (At the time of this paper’s
publication, Blue Apron customers cannot order more than one
of the same recipe within a given week.) From the standpoint

Figure 1. Example of Blue Apron weekly recipe selection.

of inventory and demand planning, it is crucial to accurately
forecast both (1) the total volume of orders that will be placed
a number of weeks ahead of delivery and (2) how many of each
recipe will be ordered over each week. Additionally, it is use-
ful from a culinary, purchasing and operations standpoint to
gain insights about how changes in these forecasts result from
changes in the purchasing behaviour of the customers. This
helps to bundle recipes together in such a way as to maxi-
mize purchasing volume, and it allows for asserting whether
behavioural changes are attributable purely to changes in cus-
tomer preferences, business decisions or seasonal factors.

3 Theoretical Framework
Our problem can be formalized as follows: given the history
Xi of purchasing behaviour and recipes offered for customer
i, we wish to predict the menu configuration that customer i
will choose on a given future week. Assuming there were N
recipes available on any given week and that every recipe could
be chosen at most M times, the combined order outcome of
customer i can expressed as a set of M -dimensional random
variables:

Ci = {Y1, Y2, . . . , YN}i (1)

where Yi,k ∈ {0, . . . ,M} is a multinomial choice about recipe
k with M + 1 potential outcomes, indicating whether recipe k
will be chosen 0, 1, . . . ,M times. Under this formulation, each
customer can choose from (M + 1)N possible alternatives, or
configurations. Mapping from Xi to Ci involves finding the
parameters of a multivariate multinomial distribution. When
the customer can choose at most M = 1 recipes of each type,
the outcome distribution reduces to a multivariate Bernoulli. In
general, inferring whether customer i will choose recipe k a
number of times j involves computing the conditional proba-
bility

Pr(Yi,k = j | Yi,l ∀l 6= k,Xi) = Ωi,k,j∑M
l=0 Ωi,k,l

(2)



where Yi,l are choices over recipes other than Yi,k. When using
linear classifiers, the functions Ωi,k,j are typically written as
[4]:

log(Ωi,k,j) = αk,j + φ(Xi)βk,j +
∑
l 6=k

ϕk,l,j,Yi,l
(3)

where αk,j , βk,j and ϕ are the parameters to be learned, and
which can be used to interpret the prediction carried out by the
algorithm. The ϕ are called association parameters and quan-
tify the relationship between choices, e.g. how the choice of
one recipe influences all other choices. These parameters are
typically learned from the data. Finally, φ(·) denotes a set of
transformations applied to the input data in order to extract use-
ful features. When non-linear classifiers such as artificial neu-
ral networks are used, the functions Ωi,k,l become harder to in-
terpret, because their behaviour is defined through a typically
large number of parameters (i.e. weights) and interconnected
computational units (i.e. neurons).

In order to minimize model complexity and maximize in-
terpretability, we investigate the use of linear classifiers and
ensemble-based classifiers. We will ignore all association pa-
rameters and assume that the outcomes Yi,k are all independent
of one another, given the input features. This assumption ef-
fectively turns the Yi,k into standard multinomial random vari-
ables whose posterior distribution is easier to interpret. Hence-
forth, we shall use the term “choice model” to refer to these
classifiers.

As discussed earlier, in order to ease inventory and demand
planning tasks, it is important to be able to predict the total
volume of orders over a number of future weeks. From our
formulation, it follows that the expected number of recipes Ni

that a customer i will order on a given week is given by

E[Ni] =
N∑

k=1

M∑
j=1

j Pr(Yi,k = j) (4)

with Pr(Yi,k = j) as defined as in Eq. (2). In this work, we
determine the distribution of Ni directly from the data, using
another classifier, which we shall call the volume model.

The rationale for using both volume and choice models is
to easily control the granularity at which ordering behaviour is
predicted and explained, namely, at the volume vs. recipe level.
The volume model can also be used to capture restrictions that
the business may impose on the total number of recipes that
users can purchase in a given week. While these constraints
could be learned by a multivariate multinomial model, they
may not be captured sufficiently well by independent multino-
mial models that do not learn the joint distribution of customer
choices.

From these considerations, it follows that the outcome pre-
dicted by the volume model may not coincide with the outcome
inferred from the choice model. In order to ensure agreement
between the two models, we scale the predicted distribution
over recipe choices predicted by the choice model so that the
sum of the probabilities over all recipes equals the volume-
model prediction.

4 Predicting Order Dynamics through Choice
and Volume Models

In the previous section, we explained how to learn a map from
user and recipe data to the volume of orders and recipes. In this
section we will show how the choices of customers at any fu-
ture time can be predicted using the customer’s history of past
choices to date, together with contextual information available
to the customers.

To that end, we use a simple autoregressive mechanism
which utilizes the volume and choice models presented earlier.
Our goal is to have the mechanism learn a map from the his-
torical data, such as user choices and recipes offered to date, to
future customer choice. Formally, such a mechanism involves
finding a function f such that

C(t+1) = f(φh(C(0:t)), φc(e(t+1))) (5)

where C(t+1) indicates the choice of a customer at the next
time step, i.e., next week, and C(0:t) denotes the history of
choices up to time t. The functions φh(·) and φc(·) are sets
of transformations that convert historical and contextual data,
respectively, into feature vectors of fixed dimensionality; and
f(·) denotes our volume or choice model presented earlier. Fi-
nally, e(t+1) are control signals available at time t + 1 that are
independent from past user choices, such as holidays and recipe
attributes. Once the parameters of f are found, Eq. (5) can
be used to predict user behaviour over an arbitrary number of
future weeks, using the mechanism presented in Algorithm 1.
After initializing the set Ĉ with the initial choice of the cus-
tomers, e.g. up until the first week of prediction, the algorithm
predicts P future weeks using an auto-regressive strategy, by
iteratively calling the function f defined earlier. Accordingly,
the predicted outcome is concatenated to the previous history of
user choices and utilized at the next iteration to predict subse-
quent choices. As can be noted, this mechanism will produce

Algorithm 1 Monte Carlo simulation of choice dynamics

1: Ĉ← user choice at time 0
2: for t in 1 through P do
3: e← contextual information at time t
4: C ← f(φh(Ĉ), φc(e))
5: Ĉ← concatenate(Ĉ, C)

a sequence of predictions maintained by the set Ĉ that sim-
ulate the future choices of the customers, up to P time steps
(i.e. weeks) in the future. In practice, given the probabilis-
tic nature of the volume and choice models, each customer is
simulated multiple times in order to collect enough data and ap-
proximate sufficiently well the statistics of the target outcome.
Note the algorithm presented here can also be used to predict
the future dynamics of newly acquired subscribers. This is eas-
ily achieved by extending the history of choices Ĉ with the
choices of these new customers.



4.1 Choice and Volume Model Features

The features chosen for our volume and choice models fall into
two main categories: user-related features and recipe-related
features. User-related features capture whether the user is
likely to order in a given week, regardless of what is on the
menu on that week: these features are particularly useful be-
cause they learn whether a given user is one who orders most
weeks, one who orders very infrequently, or one who has likely
stopped ordering entirely. Our recipe-related features encode
(1) whether a specific recipe has certain attributes (for instance,
whether it has an ingredient such as salmon or asparagus, or a
cuisine like Japanese), (2) how many other recipes on offer that
week contain the same attributes, and (3) how likely users are
to have ordered recipes with those attributes before. Together,
these three categories of recipe-related features teach the model
which users have had affinities for which types of recipes in the
past, and they allow the model to learn which upcoming recipes
users are likely to order in the future.

5 Prediction Correction
At Blue Apron, each customer has a set of orders associated
with them. Each order contains information about the recipes
that are scheduled to be shipped, if any, to the customers on
a specific week, as well as other information such as delivery
day of the week. We define the state of an order as the specific
configuration C(t) that an order takes on a given week t, as
defined as in Eq. (1). This state can be changed by the customer
an unlimited number of times before cutoff time, which is the
time at which no more changes are allowed and the order starts
being prepared for shipment. The order state information can
be used to correct the prediction made by the auto-regressive
models presented earlier.

Recall that the objective of the volume and choice models is
to estimate the final state of the orders for some arbitrary week
t in the future. Let C(t) be the final state of an order, C(0:t−1)

the past customer choices, Z(k) the state of the same order ob-
served at time k ≤ t, and e(t) the contextual information at
time t. Using Bayes’ rule, we have that

P (C(t) |Z(k), C(0:t−1), e(t)) =
η P (Z(k) | C(t))P (C(t) | C(0:t−1), e(t))

(6)

The above equation holds true if we assume that the observed
order state is independent from past customer choices and from
the context, given the choice C(t) that the customer will even-
tually make. Note that P (C(t) | Z(k), C(0:t−1), e(t)) is the
model described in Eq. (5) and that η is a normalization con-
stant. The above equation says that the corrected distribution
is obtained by weighting the predicted choices C(t), from the
volume and choice models, according to the probability of the
observation model P (Z(k) | C(t)). For instance, assuming that
the order state is predicted to be C(t) = c for a future week
t and that the current state at week k < t is Z(k) = z, then
P (Z(k) = z | C(t) = c) represents the weight assigned to the
prediction P (C(t) = c | C(0:t−1), e(t)). Intuitively, if the com-
bination (Z(k) = z | C(t) = c) has been observed frequently

(infrequently) in the past, the related prediction will be given
high (low) weight. Therefore, we can regard the prediction
from the volume and choice models as priors and the corrected
choices upon observed states as the posterior distribution over
the expected outcome from the customers.

6 Results

6.1 Comparison of User-Level Accuracy of Models

The autoregressive model of Eq. (5) was implemented using
both a multinomial logit classifier and a random forest classi-
fier with scikit-learn3 [20]. We found that multinomial logistic
regression generally outperforms random forests in terms of
predicting whether a user will select a given recipe in a given
week (Table 1). The training set was taken from the customer

Korean
Pork
Tacos

Blackened
Chicken

Roasted
Eggplant
Pitas

Logistic regression 90.15% 96.47% 63.86%
Random forest 86.86% 94.45% 54.84%

Table 1. Comparison of F1 scores between a logistic regression
model and a random forest model, calculated on our prediction
of which users (out of a sample of roughly 7,000 users total)
would receive each of the three listed recipes during the week
of September 19, 2016.

history of the same set of users that were predicted on, during
the period between January 5, 2015 and September 12, 2016.
Grid searches were performed on both models to find the op-
timal F1 scores on individual-level predictions over 24 Blue
Apron recipes offered in September/October 2016. Based on
the results of those grid searches, an L2 penalty of 1.5×105 was
applied for the logistic regression, and for the 100-tree random
forest, 5 features were considered at each split, and at least 30
samples were required to be at each leaf node. (L1 and elastic-
net penalties failed to improve upon the performance of the
L2 penalty.) For both models, roughly 150 features (varying
slightly on the type of recipe) were used in total: these features
were extracted from various attributes of the recipes offered
(ingredients, cuisine type, etc.) as well as users’ past order-
ing behavior regarding recipes with those specific attributes.
We found that features encoding how likely users are to order
recipes with various attributes (i.e. users’ past order rates for
beef recipes, for Italian recipes, etc.) are generally more pre-
dictive than features encoding whether recipes in the week that
we’re predicting contain various attributes (i.e. whether they
contain beef, whether they are Italian dishes, etc.). Despite the
fact that we find random forests to have generally worse per-
formance than multiclass logistic regressions at predicting the
likelihood of a user selecting a certain recipe, random forests
have several properties that make them generally more useful
for our specific application than logistic regressions, especially

3http://scikit-learn.org/stable/



Figure 2. When using logistic regression to predict the number of orders of a specific recipe in a specific week, accuracy depends
strongly on regularization strength. Figures show the percentage error in the predicted number of meals as a function of the type
of recipe (indicated by the legend on the right), as a function of which week the recipes were offered (x-axis) and L2 penalty value
(left, middle, right columns). Top row shows percentage errors without prediction correction, and bottom row shows percentage
errors with prediction correction, as described in Prediction Correction, above.

for our volume model. First, random forests can implicitly
learn the interactions between features, for instance, between
the presence of a certain ingredient in a recipe and a user’s past
high rate of ordering recipes containing that ingredient, with-
out having to manually specify the possibility of such interac-
tions in the model [16, 17]. This eliminates the work other-
wise needed to find the most suitable interaction terms among
a very large set of features. In addition, with linear models
such as logistic regression, it is often necessary to either apply
mathematical transformations to continuous-valued features or
split the range of feature values into several one-hot categori-
cal values in order to adequately model a feature whose rela-
tionship with the response variable is nonlinear [18]. By com-
parison, nonparametric models such as random forests are nat-
urally flexible enough to learn any mathematical relationship
between features and output variables [10]. Not needing to
search for the right mathematical relationship between features
and the response variable saves a great deal of model develop-
ment time, and avoiding one-hot encoding of different ranges
of a continuous-valued feature allows us to drastically reduce
the memory footprint of our design matrix.

6.2 Comparison of Aggregate-Level Accuracy of Models

Note that, whereas the above discussion judges logistic regres-
sions and random forests on the basis of individual-level ac-
curacy (namely, the fraction of cases in which the outcome of
a user skipping/ordering a recipe is correctly predicted), the
main use case for our models is to predict the total number of
each type of recipe that will be ordered in a given week. Thus,
aggregate-level accuracy is the metric on which these models
are ultimately judged. We find that optimizing individual-level
accuracy generally has the effect of increasing aggregate-level
accuracy as well. Specifically, we have observed that roughly

the same L2 penalty strength (1 × 105) is ideal in both maxi-
mizing the F1 score over individual customer predictions and
minimizing the absolute error on the total number of orders,
in our sample of roughly 7,000 users. This result holds for
four different validation sets (representing recipes in four dif-
ferent weeks in September/October 2016) and for several dif-
ferent categories of recipes (vegetarian and non vegetarian).
When we use logistic regression to predict the total number
of meals of a specific recipe that will be ordered in a given
week, we find that our choice of L2 parameter strongly affects
the accuracy of our predictions (Figure 2). We find here that
aggregate-level accuracy is usually significantly higher for our
non-vegetarian recipes than for our vegetarian recipes: we hy-
pothesize that this is because our non-vegetarian recipes gen-
erally have higher order volume than our vegetarian recipes,
leading to prediction fluctuations for vegetarian recipes due to
small sample size. In contrast to the sensitivity of the logistic
regression model to changes in L2 penalty strength, the accu-
racy of our random forest model in predicting the number of
orders per recipe is relatively insensitive to changes in the num-
ber of features considered at each split in a single tree. Our
predictions, on a sample of roughly 6,000 users, were mod-
ulated with a logistic-regression volume model (see Theoreti-
cal Framework in Section 3). When scaling up our volume
model prediction to roughly 37,000 users and applying predic-
tion correction, we see that the RMS error in our prediction of
the total number of orders that users will place is consistently
less than 6%, even when predicting as far as 8 weeks into the
future (Table 2). We calculate RMS error by averaging over
the error of our 100-tree random-forest-based volume model in
predicting sales data for 8 different weeks. Features used re-
lated to users’ age and purchase history, as well as their stated
willingness to order recipes containing specific proteins. As
discussed earlier, we perform Monte Carlo simulations so that



Mean error RMS error
2-week-out prediction 0.06% 3.54%
4-week-out prediction 2.19% 5.36%
6-week-out prediction 2.82% 3.90%
8-week-out prediction 1.32% 3.97%

Table 2. Mean and RMS error on the volume model’s predic-
tion of the total number of orders placed in a given week, as a
function of the number of weeks in advance that the prediction
was made.

Figure 3. Variation resulting from multiple Monte Carlo simu-
lations (5 shown) over several weeks using Algorithm 1. Val-
ues represent the percentage error in the total number of orders
placed by customers, as predicted by the volume model.

predictions made at each timestep of our autoregressive model
can be transformed into realistic feature values for the follow-
ing timestep. The error that is introduced by this sampling is
shown in Figure 3. Notably, the variability among Monte Carlo
simulations is much lower than the overall error of our model,
which implies that a low number of Monte Carlo simulations is
sufficient to achieve reasonable coverage of the distribution of
possible simulation results.

6.3 Contribution of Individual Features to Model
Accuracy

One well-known drawback of random forests is their relative
lack of interpretability. In the case of multiclass logistic regres-
sion, the values of the fitted coefficients can be directly used to
calculate the impact that features have on the probability of a
positive outcome. On the other hand, assessing the impact of
any one feature in a random forest involves summing the con-
tribution that that feature has on the predicted outcome across
hundreds of locations within the random forest [11]. We’ve
found the TreeInterpreter package for Python [22] to be useful
in calculating the contribution of each feature to the predic-
tion by compiling each feature’s contribution on each tree, and
then averaging over all trees in the random forest (see [19] for
a theoretical justification). We use this package to track how
much each feature’s contribution to the probability of a user to
order changes from one week to the next, which in turn helps
us understand how each feature influences the change in our

prediction of the aggregate number of orders over time.

7 Final Remarks and Future Work

Future versions of our prediction engine will advance both its
interpretability and its predictive power. To increase our pre-
diction engine’s interpretability, we will extend on the work of
the TreeInterpreter package to calculate the total additive con-
tribution that each feature makes to the predicted number of or-
ders. Such a calculation is possible because each split of each
decision tree in a random forest creates an additive change in
the prediction for each user, and these additive changes can be
aggregated for each feature over users. By contrast, a general-
ized linear model would not allow for such a clean breakdown
of feature contributions on the aggregate level to be calculated.
This potential for enhanced interpretability is one reason that
random forests are more suitable for our use case than logistic
regression, despite the latter’s higher user-level accuracy (Table
1).

To increase our engine’s predictive power, we will explore
the use of additional features that will allow us to identify
other important behavioral signals, such as service cancella-
tions, seasonal and holiday trends, and ordering patterns of in-
frequent orderers. We also plan to build a model to recommend
specific recipes to users directly through our web/mobile inter-
faces: this model will allow us to work towards a conversa-
tional system of iterative recommendation and prediction that
will enable refining our predictions over time and using those
predictions to recommend better recipes.
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